2025-10-08 10:26:57 +02:00

584 lines
16 KiB
Markdown

---
sub_title: "Real Time Systems 10"
auther:
- name: "Finley van Reenen"
email: "mail@lailatheelf.nl"
name_short: "E.L.F. van Reenen"
---
# Week 1.3
## assignment 3.1
> Base your code of `opdr_2_1.zip`.
> Configure the `SysTick` timer to set the `COUNTFLAG` in the `STK_CTRL` register every $0.5s$. Replace the for-loop with the following C code: `while (( STK_CTRL & (1 << 16)) == 0);` You have to properly define the symbol STK_CTRL yourself to make this work. Build and debug the project. If all is well, the user LEDs will blink with a frequency of $1 Hz$.
With bit 2 of `STK_CTRL` the clock source can be set. `1` for `AHB` or `0` for `AHB/8`. `AHB` is by default `HSI` witch is $16MHz$. I chose to use `AHB/8`.
$$
T = \frac{AHB/8}{f_{out}} = \frac{16\cdot 10^6/8}{2} = 10^6
$$
My resulting code^[also available at [/report-2/week_1.3/assignment_3.1/main.c](https://git.gay/LailaTheElf/RTS10_reports/src/branch/main/report-2/week_1.3/assignment_3.1/main.c)]:
```c {.numberLines}
#include <stdint.h>
#define RCC_AHB1ENR_BIT_GPIODEN *(volatile uint32_t*)(0x42000000 + 0x00023830 * 32 + 3 * 4)
#define GPIOD_BASE 0x40020C00
#define GPIOD_MODER *(volatile uint32_t*)(GPIOD_BASE + 0x00)
#define GPIOD_ODR *(volatile uint32_t*)(GPIOD_BASE + 0x14)
#define STK_CTRL *(volatile uint32_t*)(0xE000E010)
#define STK_LOAD *(volatile uint32_t*)(0xE000E014)
int main(void)
{
// GPIO Port D Clock Enable
RCC_AHB1ENR_BIT_GPIODEN = 1;
// GPIO Port D Pin 15 down to 12 Push/Pull Output
GPIOD_MODER = 0x55000000;
// Set green and red LEDs
GPIOD_ODR = 0x5000;
// SysTick enable with clk source to AHB/8
// (AHB is by default HSI; 16 MHz/8)
STK_CTRL = 1;
STK_LOAD = 1000000; // 16 MHz / 8 / 2 Hz
// Do forever:
while (1)
{
// Wait a moment
while ((STK_CTRL & (1 << 16)) == 0);
// Flip all LEDs
GPIOD_ODR ^= 0xF000;
}
}
```
I measured the resulting frequency with an logic analyser (figure \ref{31_logic}; channels are coloured to the led colour). It measured a period time of $499.568ms$, I call this error could be my cheap logic analyser or en error in the internal oscillator.
![Logic analiser view of LEDs for assignment 3.1\label{31_logic}](https://live.kladjes.nl/uploads/84591270-95b0-4601-aea2-ca44b51adbf9.png)
## assignment 3.2
> Configure the SysTick timer to set the `COUNTFLAG` in the `STK_CTRL` register every $0.5s$ using the CMSIS API. Replace the for-loop with the following C code: `while ((SysTick->CTRL & (1 << 16)) == 0);` The symbol SysTick is defined in the CMSIS API. Build and debug the project. If all is well, the user LEDs will blink with a frequency of $1 Hz$.
Code also available at [/report-2/week_1.3/assignment_3.2/main.c](https://git.gay/LailaTheElf/RTS10_reports/src/branch/main/report-2/week_1.3/assignment_3.2/main.c)
```c {.numberLines}
#include <stdint.h>
#include <stm32f4xx.h>
int main(void)
{
// GPIO Port D Clock Enable
RCC->AHB1ENR = RCC_AHB1ENR_GPIODEN;
// GPIO Port D Pin 15 down to 12 Push/Pull Output
GPIOD->MODER = GPIO_MODER_MODER12_0
| GPIO_MODER_MODER13_0
| GPIO_MODER_MODER14_0
| GPIO_MODER_MODER15_0;
// Set green and red LEDs
GPIOD->ODR = GPIO_ODR_OD12 | GPIO_ODR_OD14;
// SysTick enable with clk source to AHB/8
SysTick->CTRL = SysTick_CTRL_ENABLE_Msk;
SysTick->LOAD = 1000000; // 16 MHz / 8 / 2 Hz
// Do forever:
while (1)
{
// Wait a moment
while ((SysTick->CTRL & (1 << 16)) == 0);
// Flip all LEDs
GPIOD->ODR ^= GPIO_ODR_OD12
| GPIO_ODR_OD13
| GPIO_ODR_OD14
| GPIO_ODR_OD15;
}
}
```
This time I measured $499.586ms$ with the logic analyser.
## assignment 3.3
> B) Configure the SysTick timer to generate an interrupt (also called an exception) every `0.5s`.
code also available at [/report-2/week_1.3/assignment_3.3/main.c](https://git.gay/LailaTheElf/RTS10_reports/src/branch/main/report-2/week_1.3/assignment_3.3/main.c)
```c {.numberLines}
#include <stdint.h>
#include <stdbool.h>
#define RCC_AHB1ENR_BIT_GPIODEN *(volatile uint32_t*)(0x42000000 + 0x00023830 * 32 + 3 * 4)
#define GPIOD_BASE 0x40020C00
#define GPIOD_MODER *(volatile uint32_t*)(GPIOD_BASE + 0x00)
#define GPIOD_ODR *(volatile uint32_t*)(GPIOD_BASE + 0x14)
#define STK_CTRL *(volatile uint32_t*)(0xE000E010)
#define STK_LOAD *(volatile uint32_t*)(0xE000E014)
volatile bool flag = false;
void SysTick_Handler()
{
flag = true;
}
int main(void)
{
// GPIO Port D Clock Enable
RCC_AHB1ENR_BIT_GPIODEN = 1;
// GPIO Port D Pin 15 down to 12 Push/Pull Output
GPIOD_MODER = 0x55000000;
// Set green and red LEDs
GPIOD_ODR = 0x5000;
// SysTick enable with interupt and clk source to AHB/8
STK_CTRL = (1<<1) | 1;
STK_LOAD = 1000000; // 0.5 sec / (16 MHz / 8)
// Do forever:
while (1)
{
// Wait a moment
while (!flag)
{
__asm__(" WFI"); // sleep until SysTick
}
flag = false;
// Flip all LEDs
GPIOD_ODR ^= 0xF000;
}
}
```
> C) Why must the flag variable be defined as volatile?
because the compiler doesn't know when `flag` changes. Without `volatile` optimisations can think it does not change at all.
## assignment 3.4
> Configure the SysTick timer to generate an interrupt every `0.5s`. This can be done by using the function `SysTick_Config` from the CMSIS API.
code also available at [/report-2/week_1.3/assignment_3.4/main.c](https://git.gay/LailaTheElf/RTS10_reports/src/branch/main/report-2/week_1.3/assignment_3.4/main.c)
```c {.numberLines}
#include <stdint.h>
#include <stm32f4xx.h>
#include <stdbool.h>
volatile bool flag = false;
void SysTick_Handler()
{
flag = true;
}
int main(void)
{
// GPIO Port D Clock Enable
RCC->AHB1ENR = RCC_AHB1ENR_GPIODEN;
// GPIO Port D Pin 15 down to 12 Push/Pull Output
GPIOD->MODER = GPIO_MODER_MODER12_0
| GPIO_MODER_MODER13_0
| GPIO_MODER_MODER14_0
| GPIO_MODER_MODER15_0;
// Set green and red LEDs
GPIOD->ODR = GPIO_ODR_OD12 | GPIO_ODR_OD14;
// SysTick enable with interupt and clk source to AHB/8
SysTick->CTRL = SysTick_CTRL_TICKINT_Msk | SysTick_CTRL_ENABLE_Msk;
SysTick->LOAD = 1000000; // 0.5 sec / (16 MHz / 8)
// Do forever:
while (1)
{
// Wait a moment
while (!flag)
{
__asm__(" WFI"); // sleep until SysTick
}
flag = false;
// Flip all LEDs
GPIOD->ODR ^= GPIO_ODR_OD12
| GPIO_ODR_OD13
| GPIO_ODR_OD14
| GPIO_ODR_OD15;
}
}
```
## assignment 3.5
> Now based on project opdr_3_4 create a rotation loop which simulates a simple traffic light: green (5 seconds), orange (1 second), red (4 seconds). The time each light is on must be easily adjustable with a granularity of $0.5s$. The processor must be put to sleep in between interrupts. Make use of an enumeration construct (`enum`) for the colors and a `switch`-`case`-statement for the rotation.
code also available at [/report-2/week_1.3/assignment_3.5/main.c](https://git.gay/LailaTheElf/RTS10_reports/src/branch/main/report-2/week_1.3/assignment_3.5/main.c)
```c {.numberLines}
#include <stdint.h>
#include <stm32f4xx.h>
#include <stdbool.h>
volatile bool flag = false;
void SysTick_Handler()
{
flag = true;
}
enum STATE {
STATE_GREEN,
STATE_ORANGE,
STATE_RED
};
int main(void)
{
// GPIO Port D Clock Enable
RCC->AHB1ENR = RCC_AHB1ENR_GPIODEN;
// GPIO Port D Pin 15 down to 12 Push/Pull Output
GPIOD->MODER = GPIO_MODER_MODER12_0
| GPIO_MODER_MODER13_0
| GPIO_MODER_MODER14_0
| GPIO_MODER_MODER15_0;
// Set green and red LEDs
GPIOD->ODR = GPIO_ODR_OD12;
// SysTick enable with interupt and clk source to AHB/8
SysTick->CTRL = SysTick_CTRL_TICKINT_Msk | SysTick_CTRL_ENABLE_Msk;
SysTick->LOAD = 1000000; // 0.5 sec / (8 MHz / 8)
// time of each color in half seconds
const uint32_t time_green = 10; // 5 seconds
const uint32_t time_orange = 2; // 1 seconds
const uint32_t time_red = 8; // 4 seconds
uint32_t timer = time_green;
enum STATE State = STATE_GREEN;
// Do forever:
while (1)
{
// Wait a moment
while (!flag)
{
__asm__(" WFI"); // sleep until SysTick
}
flag = false;
timer--;
if (timer == 0)
{
// turn off all leds
GPIOD->ODR &= ~(GPIO_ODR_OD12
| GPIO_ODR_OD13
| GPIO_ODR_OD14
| GPIO_ODR_OD15);
switch (State) {
case STATE_GREEN:
State = STATE_ORANGE;
GPIOD->ODR |= GPIO_ODR_OD13;
timer = time_orange;
break;
case STATE_ORANGE:
State = STATE_RED;
GPIOD->ODR |= GPIO_ODR_OD14;
timer = time_red;
break;
case STATE_RED:
State = STATE_GREEN;
GPIOD->ODR |= GPIO_ODR_OD12;
timer = time_green;
break;
}
}
}
}
```
Again I validated the timings with the logic-analyser.
![](https://live.kladjes.nl/uploads/16fe6424-cff1-4ce4-b506-7f8d87ec4dc4.png)
## assignment 3.6
> - create a copy of the previous project and rename it to opdr_3_6.
> - Using the description of this assignment, define a struct for a “task” and create a global array of 8 empty tasks.
> - Create a function `addTask(...)` to help create a task from a function pointer and other parameters, and add it to the task list (the array) at an appropriate index.
> - Create 4 functions to toggle each led separately, these are the functions that will correspond to 4 tasks.
> - Use `addTask(...)` 4 times to couple each led function to a new task in the task list with periods of: 200 ticks, 500 ticks, 750 ticks, and 300 ticks for green, orange, red, and blue respectively.
> - In the SysTick ISR, walk through the task list and decrement each of the task counters.
> - Think of, and expand on, the task struct to notify per task whether it is in a WAITING or READY state. Set the state in the ISR depending on the task counter.
> - Create a function runReadyTasks() that will walk through the task list and execute any task in the READY state. Replace your switch-case rotation in the function main with a call to this function.
> - Make use of a logic analyzer to verify the timing of the tasks
code also available at [/report-2/week_1.3/assignment_3.6/main.c](https://git.gay/LailaTheElf/RTS10_reports/src/branch/main/report-2/week_1.3/assignment_3.6/main.c)
```c {.numberLines}
#include <stdint.h>
#include <stm32f4xx.h>
#include <stdbool.h>
volatile uint32_t ISR_Ticks = 0;
struct TASK {
void (*fn)(void);
uint32_t counter;
uint32_t counter_rst;
};
uint8_t Tasks_len = 0;
struct TASK Tasks[8];
void SysTick_Handler()
{
ISR_Ticks++;
}
bool addTask(void (*fn)(void), uint32_t counter)
{
if (Tasks_len >= 8) {
return false;
}
Tasks[Tasks_len].fn = fn;
Tasks[Tasks_len].counter = counter;
Tasks[Tasks_len].counter_rst = counter;
Tasks_len++;
return true;
}
void taskGreen()
{
GPIOD->ODR ^= GPIO_ODR_OD12;
}
void taskOrange()
{
GPIOD->ODR ^= GPIO_ODR_OD13;
}
void taskRed()
{
GPIOD->ODR ^= GPIO_ODR_OD14;
}
void taskBlue()
{
GPIOD->ODR ^= GPIO_ODR_OD15;
}
enum STATE {
STATE_GREEN,
STATE_ORANGE,
STATE_RED
};
int main(void)
{
// GPIO Port D Clock Enable
RCC->AHB1ENR = RCC_AHB1ENR_GPIODEN;
// GPIO Port D Pin 15 down to 12 Push/Pull Output
GPIOD->MODER = GPIO_MODER_MODER12_0
| GPIO_MODER_MODER13_0
| GPIO_MODER_MODER14_0
| GPIO_MODER_MODER15_0;
// Set all leds off
GPIOD->ODR = 0;
// SysTick enable with interupt and clk source to AHB/8
SysTick->CTRL = SysTick_CTRL_TICKINT_Msk | SysTick_CTRL_ENABLE_Msk;
SysTick->LOAD = 2000; // 1 ms / (16 MHz / 8)
addTask(*taskGreen, 200);
addTask(*taskOrange, 500);
addTask(*taskRed, 750);
addTask(*taskBlue, 300);
// Do forever:
while (1)
{
// Wait a moment
while (ISR_Ticks == 0)
{
__asm__(" WFI"); // sleep until SysTick
}
uint32_t ticks = ISR_Ticks;
ISR_Ticks = 0;
// decrement all counters
for (uint8_t i=0; i<Tasks_len; i++)
{
if (Tasks[i].counter > ticks)
{
Tasks[i].counter -= ticks;
}
else
{
Tasks[i].counter = 0;
}
}
// rust all tasks where the counter has run out
for (uint8_t i=0; i<Tasks_len; i++)
{
if (Tasks[i].counter == 0)
{
Tasks[i].fn();
Tasks[i].counter = Tasks[i].counter_rst;
}
}
}
}
```
![](https://live.kladjes.nl/uploads/c5e6a20b-34ed-4bf0-9bf0-ec175a25e4ae.png)
## Assignment 3.7
> Now add initial delays (in systicks) to your tasks. Use an initial delay of 100, 200, 300, and 400 for green, orange, red, and blue respectively. Make use of a logic analyser to verify the timing.
When A task is created, in the version of [Assignment 3.6], the following function is used:
```c
bool addTask(void (*fn)(void), uint32_t counter)
{
if (Tasks_len >= 8) {
return false;
}
Tasks[Tasks_len].fn = fn;
Tasks[Tasks_len].counter = counter;
Tasks[Tasks_len].counter_rst = counter;
Tasks_len++;
return true;
}
```
Here the `counter` and `counter_rst` members are set to the same value. `counter` is the counter that is decremented each SysClock. `counter_rst` is the value `counter` is reset to if it reacts 0 after the task is run.
Setting `counter` to the initial delay already solves this assignment. The following code implements this change.
code also available at [/report-2/week_1.3/assignment_3.7/main.c](https://git.gay/LailaTheElf/RTS10_reports/src/branch/main/report-2/week_1.3/assignment_3.7/main.c)
```c {.numberLines}
#include <stdint.h>
#include <stm32f4xx.h>
#include <stdbool.h>
volatile uint32_t ISR_Ticks = 0;
struct TASK {
void (*fn)(void);
uint32_t counter;
uint32_t counter_rst;
};
uint8_t Tasks_len = 0;
struct TASK Tasks[8];
void SysTick_Handler()
{
ISR_Ticks++;
}
bool addTask(void (*fn)(void), uint32_t counter, uint32_t counter_init)
{
if (Tasks_len >= 8) {
return false;
}
Tasks[Tasks_len].fn = fn;
Tasks[Tasks_len].counter = counter_init;
Tasks[Tasks_len].counter_rst = counter;
Tasks_len++;
return true;
}
void taskGreen()
{
GPIOD->ODR ^= GPIO_ODR_OD12;
}
void taskOrange()
{
GPIOD->ODR ^= GPIO_ODR_OD13;
}
void taskRed()
{
GPIOD->ODR ^= GPIO_ODR_OD14;
}
void taskBlue()
{
GPIOD->ODR ^= GPIO_ODR_OD15;
}
enum STATE {
STATE_GREEN,
STATE_ORANGE,
STATE_RED
};
int main(void)
{
// GPIO Port D Clock Enable
RCC->AHB1ENR = RCC_AHB1ENR_GPIODEN;
// GPIO Port D Pin 15 down to 12 Push/Pull Output
GPIOD->MODER = GPIO_MODER_MODER12_0
| GPIO_MODER_MODER13_0
| GPIO_MODER_MODER14_0
| GPIO_MODER_MODER15_0;
// Set all leds off
GPIOD->ODR = 0;
// SysTick enable with interupt and clk source to AHB/8
SysTick->CTRL = SysTick_CTRL_TICKINT_Msk | SysTick_CTRL_ENABLE_Msk;
SysTick->LOAD = 2000; // 1 ms / (16 MHz / 8)
addTask(*taskGreen, 200, 100);
addTask(*taskOrange, 500, 200);
addTask(*taskRed, 750, 300);
addTask(*taskBlue, 300, 400);
// Do forever:
while (1)
{
// Wait a moment
while (ISR_Ticks == 0)
{
__asm__(" WFI"); // sleep until SysTick
}
uint32_t ticks = ISR_Ticks;
ISR_Ticks = 0;
// decrement all counters
for (uint8_t i=0; i<Tasks_len; i++)
{
if (Tasks[i].counter > ticks)
{
Tasks[i].counter -= ticks;
}
else
{
Tasks[i].counter = 0;
}
}
// rust all tasks where the counter has run out
for (uint8_t i=0; i<Tasks_len; i++)
{
if (Tasks[i].counter == 0)
{
Tasks[i].fn();
Tasks[i].counter = Tasks[i].counter_rst;
}
}
}
}
```
![](https://live.kladjes.nl/uploads/feb9df6b-ef4d-4bbc-b524-a2ab1d44dc33.png)