379 lines
12 KiB
Rust

use core::ptr::write_volatile;
use core::sync::atomic::{fence, AtomicBool, Ordering};
use embassy_sync::waitqueue::AtomicWaker;
use pac::flash::regs::Sr;
use super::{get_flash_regions, FlashBank, FlashSector, WRITE_SIZE};
use crate::_generated::FLASH_SIZE;
use crate::flash::Error;
use crate::pac;
static WAKER: AtomicWaker = AtomicWaker::new();
static DATA_CACHE_WAS_ENABLED: AtomicBool = AtomicBool::new(false);
impl FlashSector {
const fn snb(&self) -> u8 {
((self.bank as u8) << 4) + self.index_in_bank
}
}
pub(crate) unsafe fn on_interrupt() {
// Clear IRQ flags
pac::FLASH.sr().write(|w| {
w.set_operr(true);
w.set_eop(true);
});
WAKER.wake();
}
pub(crate) unsafe fn lock() {
pac::FLASH.cr().modify(|w| w.set_lock(true));
}
pub(crate) unsafe fn unlock() {
if pac::FLASH.cr().read().lock() {
pac::FLASH.keyr().write_value(0x4567_0123);
pac::FLASH.keyr().write_value(0xCDEF_89AB);
}
}
pub(crate) unsafe fn enable_write() {
assert_eq!(0, WRITE_SIZE % 4);
save_data_cache_state();
pac::FLASH.cr().write(|w| {
w.set_pg(true);
w.set_psize(pac::flash::vals::Psize::PSIZE32);
w.set_eopie(true);
w.set_errie(true);
});
}
pub(crate) unsafe fn disable_write() {
pac::FLASH.cr().write(|w| {
w.set_pg(false);
w.set_eopie(false);
w.set_errie(false);
});
restore_data_cache_state();
}
pub(crate) unsafe fn enable_blocking_write() {
assert_eq!(0, WRITE_SIZE % 4);
save_data_cache_state();
pac::FLASH.cr().write(|w| {
w.set_pg(true);
w.set_psize(pac::flash::vals::Psize::PSIZE32);
});
}
pub(crate) unsafe fn disable_blocking_write() {
pac::FLASH.cr().write(|w| w.set_pg(false));
restore_data_cache_state();
}
pub(crate) async unsafe fn write(start_address: u32, buf: &[u8; WRITE_SIZE]) -> Result<(), Error> {
write_start(start_address, buf);
wait_ready().await
}
pub(crate) unsafe fn blocking_write(start_address: u32, buf: &[u8; WRITE_SIZE]) -> Result<(), Error> {
write_start(start_address, buf);
blocking_wait_ready()
}
unsafe fn write_start(start_address: u32, buf: &[u8; WRITE_SIZE]) {
let mut address = start_address;
for val in buf.chunks(4) {
write_volatile(address as *mut u32, u32::from_le_bytes(unwrap!(val.try_into())));
address += val.len() as u32;
// prevents parallelism errors
fence(Ordering::SeqCst);
}
}
pub(crate) async unsafe fn erase_sector(sector: &FlashSector) -> Result<(), Error> {
save_data_cache_state();
trace!("Erasing sector number {}", sector.snb());
pac::FLASH.cr().modify(|w| {
w.set_ser(true);
w.set_snb(sector.snb());
w.set_eopie(true);
w.set_errie(true);
});
pac::FLASH.cr().modify(|w| {
w.set_strt(true);
});
let ret: Result<(), Error> = wait_ready().await;
pac::FLASH.cr().modify(|w| {
w.set_eopie(false);
w.set_errie(false);
});
clear_all_err();
restore_data_cache_state();
ret
}
pub(crate) unsafe fn blocking_erase_sector(sector: &FlashSector) -> Result<(), Error> {
save_data_cache_state();
trace!("Blocking erasing sector number {}", sector.snb());
pac::FLASH.cr().modify(|w| {
w.set_ser(true);
w.set_snb(sector.snb())
});
pac::FLASH.cr().modify(|w| {
w.set_strt(true);
});
let ret: Result<(), Error> = blocking_wait_ready();
clear_all_err();
restore_data_cache_state();
ret
}
pub(crate) fn clear_all_err() {
// read and write back the same value.
// This clears all "write 1 to clear" bits.
pac::FLASH.sr().modify(|_| {});
}
pub(crate) async fn wait_ready() -> Result<(), Error> {
use core::future::poll_fn;
use core::task::Poll;
poll_fn(|cx| {
WAKER.register(cx.waker());
let sr = pac::FLASH.sr().read();
if !sr.bsy() {
Poll::Ready(get_result(sr))
} else {
return Poll::Pending;
}
})
.await
}
unsafe fn blocking_wait_ready() -> Result<(), Error> {
loop {
let sr = pac::FLASH.sr().read();
if !sr.bsy() {
return get_result(sr);
}
}
}
fn get_result(sr: Sr) -> Result<(), Error> {
if sr.pgserr() {
Err(Error::Seq)
} else if sr.pgperr() {
Err(Error::Parallelism)
} else if sr.pgaerr() {
Err(Error::Unaligned)
} else if sr.wrperr() {
Err(Error::Protected)
} else {
Ok(())
}
}
fn save_data_cache_state() {
let dual_bank = unwrap!(get_flash_regions().last()).bank == FlashBank::Bank2;
if dual_bank {
// Disable data cache during write/erase if there are two banks, see errata 2.2.12
let dcen = pac::FLASH.acr().read().dcen();
DATA_CACHE_WAS_ENABLED.store(dcen, Ordering::Relaxed);
if dcen {
pac::FLASH.acr().modify(|w| w.set_dcen(false));
}
}
}
fn restore_data_cache_state() {
let dual_bank = unwrap!(get_flash_regions().last()).bank == FlashBank::Bank2;
if dual_bank {
// Restore data cache if it was enabled
let dcen = DATA_CACHE_WAS_ENABLED.load(Ordering::Relaxed);
if dcen {
// Reset data cache before we enable it again
pac::FLASH.acr().modify(|w| w.set_dcrst(true));
pac::FLASH.acr().modify(|w| w.set_dcrst(false));
pac::FLASH.acr().modify(|w| w.set_dcen(true))
}
}
}
pub(crate) fn assert_not_corrupted_read(end_address: u32) {
#[allow(unused)]
const REVISION_3: u16 = 0x2001;
#[allow(unused)]
let second_bank_read =
unwrap!(get_flash_regions().last()).bank == FlashBank::Bank2 && end_address > (FLASH_SIZE / 2) as u32;
#[cfg(any(
feature = "stm32f427ai",
feature = "stm32f427ii",
feature = "stm32f427vi",
feature = "stm32f427zi",
feature = "stm32f429ai",
feature = "stm32f429bi",
feature = "stm32f429ii",
feature = "stm32f429ni",
feature = "stm32f429vi",
feature = "stm32f429zi",
feature = "stm32f437ai",
feature = "stm32f437ii",
feature = "stm32f437vi",
feature = "stm32f437zi",
feature = "stm32f439ai",
feature = "stm32f439bi",
feature = "stm32f439ii",
feature = "stm32f439ni",
feature = "stm32f439vi",
feature = "stm32f439zi",
))]
if second_bank_read && pac::DBGMCU.idcode().read().rev_id() < REVISION_3 && !pa12_is_output_pull_low() {
panic!("Read corruption for stm32f42xxI and stm32f43xxI when PA12 is in use for chips below revision 3, see errata 2.2.11");
}
#[cfg(any(
feature = "stm32f427ag",
feature = "stm32f427ig",
feature = "stm32f427vg",
feature = "stm32f427zg",
feature = "stm32f429ag",
feature = "stm32f429bg",
feature = "stm32f429ig",
feature = "stm32f429ng",
feature = "stm32f429vg",
feature = "stm32f429zg",
feature = "stm32f437ig",
feature = "stm32f437vg",
feature = "stm32f437zg",
feature = "stm32f439bg",
feature = "stm32f439ig",
feature = "stm32f439ng",
feature = "stm32f439vg",
feature = "stm32f439zg",
))]
if second_bank_read && pac::DBGMCU.idcode().read().rev_id() < REVISION_3 && !pa12_is_output_pull_low() {
panic!("Read corruption for stm32f42xxG and stm32f43xxG in dual bank mode when PA12 is in use for chips below revision 3, see errata 2.2.11");
}
}
#[allow(unused)]
fn pa12_is_output_pull_low() -> bool {
use pac::gpio::vals;
use pac::GPIOA;
const PIN: usize = 12;
GPIOA.moder().read().moder(PIN) == vals::Moder::OUTPUT
&& GPIOA.pupdr().read().pupdr(PIN) == vals::Pupdr::PULL_DOWN
&& GPIOA.odr().read().odr(PIN) == vals::Odr::LOW
}
#[cfg(test)]
mod tests {
use super::*;
use crate::flash::{get_sector, FlashBank};
#[test]
#[cfg(stm32f429)]
fn can_get_sector() {
const SMALL_SECTOR_SIZE: u32 = 16 * 1024;
const MEDIUM_SECTOR_SIZE: u32 = 64 * 1024;
const LARGE_SECTOR_SIZE: u32 = 128 * 1024;
if !cfg!(feature = "dual-bank") {
let assert_sector = |snb: u8, index_in_bank: u8, start: u32, size: u32, address: u32| {
let sector = get_sector(address, crate::flash::get_flash_regions());
assert_eq!(snb, sector.snb());
assert_eq!(
FlashSector {
bank: sector.bank,
index_in_bank,
start,
size
},
sector
);
};
assert_sector(0x00, 0, 0x0800_0000, SMALL_SECTOR_SIZE, 0x0800_0000);
assert_sector(0x00, 0, 0x0800_0000, SMALL_SECTOR_SIZE, 0x0800_3FFF);
assert_sector(0x03, 3, 0x0800_C000, SMALL_SECTOR_SIZE, 0x0800_C000);
assert_sector(0x03, 3, 0x0800_C000, SMALL_SECTOR_SIZE, 0x0800_FFFF);
assert_sector(0x04, 4, 0x0801_0000, MEDIUM_SECTOR_SIZE, 0x0801_0000);
assert_sector(0x04, 4, 0x0801_0000, MEDIUM_SECTOR_SIZE, 0x0801_FFFF);
assert_sector(0x05, 5, 0x0802_0000, LARGE_SECTOR_SIZE, 0x0802_0000);
assert_sector(0x05, 5, 0x0802_0000, LARGE_SECTOR_SIZE, 0x0803_FFFF);
assert_sector(0x0B, 11, 0x080E_0000, LARGE_SECTOR_SIZE, 0x080E_0000);
assert_sector(0x0B, 11, 0x080E_0000, LARGE_SECTOR_SIZE, 0x080F_FFFF);
} else {
let assert_sector = |snb: u8, bank: FlashBank, index_in_bank: u8, start: u32, size: u32, address: u32| {
let sector = get_sector(address, crate::flash::get_flash_regions());
assert_eq!(snb, sector.snb());
assert_eq!(
FlashSector {
bank,
index_in_bank,
start,
size
},
sector
)
};
assert_sector(0x00, FlashBank::Bank1, 0, 0x0800_0000, SMALL_SECTOR_SIZE, 0x0800_0000);
assert_sector(0x00, FlashBank::Bank1, 0, 0x0800_0000, SMALL_SECTOR_SIZE, 0x0800_3FFF);
assert_sector(0x03, FlashBank::Bank1, 3, 0x0800_C000, SMALL_SECTOR_SIZE, 0x0800_C000);
assert_sector(0x03, FlashBank::Bank1, 3, 0x0800_C000, SMALL_SECTOR_SIZE, 0x0800_FFFF);
assert_sector(0x04, FlashBank::Bank1, 4, 0x0801_0000, MEDIUM_SECTOR_SIZE, 0x0801_0000);
assert_sector(0x04, FlashBank::Bank1, 4, 0x0801_0000, MEDIUM_SECTOR_SIZE, 0x0801_FFFF);
assert_sector(0x05, FlashBank::Bank1, 5, 0x0802_0000, LARGE_SECTOR_SIZE, 0x0802_0000);
assert_sector(0x05, FlashBank::Bank1, 5, 0x0802_0000, LARGE_SECTOR_SIZE, 0x0803_FFFF);
assert_sector(0x07, FlashBank::Bank1, 7, 0x0806_0000, LARGE_SECTOR_SIZE, 0x0806_0000);
assert_sector(0x07, FlashBank::Bank1, 7, 0x0806_0000, LARGE_SECTOR_SIZE, 0x0807_FFFF);
assert_sector(0x10, FlashBank::Bank2, 0, 0x0808_0000, SMALL_SECTOR_SIZE, 0x0808_0000);
assert_sector(0x10, FlashBank::Bank2, 0, 0x0808_0000, SMALL_SECTOR_SIZE, 0x0808_3FFF);
assert_sector(0x13, FlashBank::Bank2, 3, 0x0808_C000, SMALL_SECTOR_SIZE, 0x0808_C000);
assert_sector(0x13, FlashBank::Bank2, 3, 0x0808_C000, SMALL_SECTOR_SIZE, 0x0808_FFFF);
assert_sector(0x14, FlashBank::Bank2, 4, 0x0809_0000, MEDIUM_SECTOR_SIZE, 0x0809_0000);
assert_sector(0x14, FlashBank::Bank2, 4, 0x0809_0000, MEDIUM_SECTOR_SIZE, 0x0809_FFFF);
assert_sector(0x15, FlashBank::Bank2, 5, 0x080A_0000, LARGE_SECTOR_SIZE, 0x080A_0000);
assert_sector(0x15, FlashBank::Bank2, 5, 0x080A_0000, LARGE_SECTOR_SIZE, 0x080B_FFFF);
assert_sector(0x17, FlashBank::Bank2, 7, 0x080E_0000, LARGE_SECTOR_SIZE, 0x080E_0000);
assert_sector(0x17, FlashBank::Bank2, 7, 0x080E_0000, LARGE_SECTOR_SIZE, 0x080F_FFFF);
}
}
}
#[cfg(all(bank_setup_configurable))]
pub(crate) fn check_bank_setup() {
if cfg!(feature = "single-bank") && pac::FLASH.optcr().read().db1m() {
panic!("Embassy is configured as single-bank, but the hardware is running in dual-bank mode. Change the hardware by changing the db1m value in the user option bytes or configure embassy to use dual-bank config");
}
if cfg!(feature = "dual-bank") && !pac::FLASH.optcr().read().db1m() {
panic!("Embassy is configured as dual-bank, but the hardware is running in single-bank mode. Change the hardware by changing the db1m value in the user option bytes or configure embassy to use single-bank config");
}
}