use core::ptr::write_volatile; use core::sync::atomic::{fence, AtomicBool, Ordering}; use embassy_sync::waitqueue::AtomicWaker; use pac::flash::regs::Sr; use super::{get_flash_regions, FlashBank, FlashSector, WRITE_SIZE}; use crate::_generated::FLASH_SIZE; use crate::flash::Error; use crate::pac; static WAKER: AtomicWaker = AtomicWaker::new(); static DATA_CACHE_WAS_ENABLED: AtomicBool = AtomicBool::new(false); impl FlashSector { const fn snb(&self) -> u8 { ((self.bank as u8) << 4) + self.index_in_bank } } pub(crate) unsafe fn on_interrupt() { // Clear IRQ flags pac::FLASH.sr().write(|w| { w.set_operr(true); w.set_eop(true); }); WAKER.wake(); } pub(crate) unsafe fn lock() { pac::FLASH.cr().modify(|w| w.set_lock(true)); } pub(crate) unsafe fn unlock() { if pac::FLASH.cr().read().lock() { pac::FLASH.keyr().write_value(0x4567_0123); pac::FLASH.keyr().write_value(0xCDEF_89AB); } } pub(crate) unsafe fn enable_write() { assert_eq!(0, WRITE_SIZE % 4); save_data_cache_state(); pac::FLASH.cr().write(|w| { w.set_pg(true); w.set_psize(pac::flash::vals::Psize::PSIZE32); w.set_eopie(true); w.set_errie(true); }); } pub(crate) unsafe fn disable_write() { pac::FLASH.cr().write(|w| { w.set_pg(false); w.set_eopie(false); w.set_errie(false); }); restore_data_cache_state(); } pub(crate) unsafe fn enable_blocking_write() { assert_eq!(0, WRITE_SIZE % 4); save_data_cache_state(); pac::FLASH.cr().write(|w| { w.set_pg(true); w.set_psize(pac::flash::vals::Psize::PSIZE32); }); } pub(crate) unsafe fn disable_blocking_write() { pac::FLASH.cr().write(|w| w.set_pg(false)); restore_data_cache_state(); } pub(crate) async unsafe fn write(start_address: u32, buf: &[u8; WRITE_SIZE]) -> Result<(), Error> { write_start(start_address, buf); wait_ready().await } pub(crate) unsafe fn blocking_write(start_address: u32, buf: &[u8; WRITE_SIZE]) -> Result<(), Error> { write_start(start_address, buf); blocking_wait_ready() } unsafe fn write_start(start_address: u32, buf: &[u8; WRITE_SIZE]) { let mut address = start_address; for val in buf.chunks(4) { write_volatile(address as *mut u32, u32::from_le_bytes(unwrap!(val.try_into()))); address += val.len() as u32; // prevents parallelism errors fence(Ordering::SeqCst); } } pub(crate) async unsafe fn erase_sector(sector: &FlashSector) -> Result<(), Error> { save_data_cache_state(); trace!("Erasing sector number {}", sector.snb()); pac::FLASH.cr().modify(|w| { w.set_ser(true); w.set_snb(sector.snb()); w.set_eopie(true); w.set_errie(true); }); pac::FLASH.cr().modify(|w| { w.set_strt(true); }); let ret: Result<(), Error> = wait_ready().await; pac::FLASH.cr().modify(|w| { w.set_eopie(false); w.set_errie(false); }); clear_all_err(); restore_data_cache_state(); ret } pub(crate) unsafe fn blocking_erase_sector(sector: &FlashSector) -> Result<(), Error> { save_data_cache_state(); trace!("Blocking erasing sector number {}", sector.snb()); pac::FLASH.cr().modify(|w| { w.set_ser(true); w.set_snb(sector.snb()) }); pac::FLASH.cr().modify(|w| { w.set_strt(true); }); let ret: Result<(), Error> = blocking_wait_ready(); clear_all_err(); restore_data_cache_state(); ret } pub(crate) fn clear_all_err() { // read and write back the same value. // This clears all "write 1 to clear" bits. pac::FLASH.sr().modify(|_| {}); } pub(crate) async fn wait_ready() -> Result<(), Error> { use core::future::poll_fn; use core::task::Poll; poll_fn(|cx| { WAKER.register(cx.waker()); let sr = pac::FLASH.sr().read(); if !sr.bsy() { Poll::Ready(get_result(sr)) } else { return Poll::Pending; } }) .await } unsafe fn blocking_wait_ready() -> Result<(), Error> { loop { let sr = pac::FLASH.sr().read(); if !sr.bsy() { return get_result(sr); } } } fn get_result(sr: Sr) -> Result<(), Error> { if sr.pgserr() { Err(Error::Seq) } else if sr.pgperr() { Err(Error::Parallelism) } else if sr.pgaerr() { Err(Error::Unaligned) } else if sr.wrperr() { Err(Error::Protected) } else { Ok(()) } } fn save_data_cache_state() { let dual_bank = unwrap!(get_flash_regions().last()).bank == FlashBank::Bank2; if dual_bank { // Disable data cache during write/erase if there are two banks, see errata 2.2.12 let dcen = pac::FLASH.acr().read().dcen(); DATA_CACHE_WAS_ENABLED.store(dcen, Ordering::Relaxed); if dcen { pac::FLASH.acr().modify(|w| w.set_dcen(false)); } } } fn restore_data_cache_state() { let dual_bank = unwrap!(get_flash_regions().last()).bank == FlashBank::Bank2; if dual_bank { // Restore data cache if it was enabled let dcen = DATA_CACHE_WAS_ENABLED.load(Ordering::Relaxed); if dcen { // Reset data cache before we enable it again pac::FLASH.acr().modify(|w| w.set_dcrst(true)); pac::FLASH.acr().modify(|w| w.set_dcrst(false)); pac::FLASH.acr().modify(|w| w.set_dcen(true)) } } } pub(crate) fn assert_not_corrupted_read(end_address: u32) { #[allow(unused)] const REVISION_3: u16 = 0x2001; #[allow(unused)] let second_bank_read = unwrap!(get_flash_regions().last()).bank == FlashBank::Bank2 && end_address > (FLASH_SIZE / 2) as u32; #[cfg(any( feature = "stm32f427ai", feature = "stm32f427ii", feature = "stm32f427vi", feature = "stm32f427zi", feature = "stm32f429ai", feature = "stm32f429bi", feature = "stm32f429ii", feature = "stm32f429ni", feature = "stm32f429vi", feature = "stm32f429zi", feature = "stm32f437ai", feature = "stm32f437ii", feature = "stm32f437vi", feature = "stm32f437zi", feature = "stm32f439ai", feature = "stm32f439bi", feature = "stm32f439ii", feature = "stm32f439ni", feature = "stm32f439vi", feature = "stm32f439zi", ))] if second_bank_read && pac::DBGMCU.idcode().read().rev_id() < REVISION_3 && !pa12_is_output_pull_low() { panic!("Read corruption for stm32f42xxI and stm32f43xxI when PA12 is in use for chips below revision 3, see errata 2.2.11"); } #[cfg(any( feature = "stm32f427ag", feature = "stm32f427ig", feature = "stm32f427vg", feature = "stm32f427zg", feature = "stm32f429ag", feature = "stm32f429bg", feature = "stm32f429ig", feature = "stm32f429ng", feature = "stm32f429vg", feature = "stm32f429zg", feature = "stm32f437ig", feature = "stm32f437vg", feature = "stm32f437zg", feature = "stm32f439bg", feature = "stm32f439ig", feature = "stm32f439ng", feature = "stm32f439vg", feature = "stm32f439zg", ))] if second_bank_read && pac::DBGMCU.idcode().read().rev_id() < REVISION_3 && !pa12_is_output_pull_low() { panic!("Read corruption for stm32f42xxG and stm32f43xxG in dual bank mode when PA12 is in use for chips below revision 3, see errata 2.2.11"); } } #[allow(unused)] fn pa12_is_output_pull_low() -> bool { use pac::gpio::vals; use pac::GPIOA; const PIN: usize = 12; GPIOA.moder().read().moder(PIN) == vals::Moder::OUTPUT && GPIOA.pupdr().read().pupdr(PIN) == vals::Pupdr::PULL_DOWN && GPIOA.odr().read().odr(PIN) == vals::Odr::LOW } #[cfg(test)] mod tests { use super::*; use crate::flash::{get_sector, FlashBank}; #[test] #[cfg(stm32f429)] fn can_get_sector() { const SMALL_SECTOR_SIZE: u32 = 16 * 1024; const MEDIUM_SECTOR_SIZE: u32 = 64 * 1024; const LARGE_SECTOR_SIZE: u32 = 128 * 1024; if !cfg!(feature = "dual-bank") { let assert_sector = |snb: u8, index_in_bank: u8, start: u32, size: u32, address: u32| { let sector = get_sector(address, crate::flash::get_flash_regions()); assert_eq!(snb, sector.snb()); assert_eq!( FlashSector { bank: sector.bank, index_in_bank, start, size }, sector ); }; assert_sector(0x00, 0, 0x0800_0000, SMALL_SECTOR_SIZE, 0x0800_0000); assert_sector(0x00, 0, 0x0800_0000, SMALL_SECTOR_SIZE, 0x0800_3FFF); assert_sector(0x03, 3, 0x0800_C000, SMALL_SECTOR_SIZE, 0x0800_C000); assert_sector(0x03, 3, 0x0800_C000, SMALL_SECTOR_SIZE, 0x0800_FFFF); assert_sector(0x04, 4, 0x0801_0000, MEDIUM_SECTOR_SIZE, 0x0801_0000); assert_sector(0x04, 4, 0x0801_0000, MEDIUM_SECTOR_SIZE, 0x0801_FFFF); assert_sector(0x05, 5, 0x0802_0000, LARGE_SECTOR_SIZE, 0x0802_0000); assert_sector(0x05, 5, 0x0802_0000, LARGE_SECTOR_SIZE, 0x0803_FFFF); assert_sector(0x0B, 11, 0x080E_0000, LARGE_SECTOR_SIZE, 0x080E_0000); assert_sector(0x0B, 11, 0x080E_0000, LARGE_SECTOR_SIZE, 0x080F_FFFF); } else { let assert_sector = |snb: u8, bank: FlashBank, index_in_bank: u8, start: u32, size: u32, address: u32| { let sector = get_sector(address, crate::flash::get_flash_regions()); assert_eq!(snb, sector.snb()); assert_eq!( FlashSector { bank, index_in_bank, start, size }, sector ) }; assert_sector(0x00, FlashBank::Bank1, 0, 0x0800_0000, SMALL_SECTOR_SIZE, 0x0800_0000); assert_sector(0x00, FlashBank::Bank1, 0, 0x0800_0000, SMALL_SECTOR_SIZE, 0x0800_3FFF); assert_sector(0x03, FlashBank::Bank1, 3, 0x0800_C000, SMALL_SECTOR_SIZE, 0x0800_C000); assert_sector(0x03, FlashBank::Bank1, 3, 0x0800_C000, SMALL_SECTOR_SIZE, 0x0800_FFFF); assert_sector(0x04, FlashBank::Bank1, 4, 0x0801_0000, MEDIUM_SECTOR_SIZE, 0x0801_0000); assert_sector(0x04, FlashBank::Bank1, 4, 0x0801_0000, MEDIUM_SECTOR_SIZE, 0x0801_FFFF); assert_sector(0x05, FlashBank::Bank1, 5, 0x0802_0000, LARGE_SECTOR_SIZE, 0x0802_0000); assert_sector(0x05, FlashBank::Bank1, 5, 0x0802_0000, LARGE_SECTOR_SIZE, 0x0803_FFFF); assert_sector(0x07, FlashBank::Bank1, 7, 0x0806_0000, LARGE_SECTOR_SIZE, 0x0806_0000); assert_sector(0x07, FlashBank::Bank1, 7, 0x0806_0000, LARGE_SECTOR_SIZE, 0x0807_FFFF); assert_sector(0x10, FlashBank::Bank2, 0, 0x0808_0000, SMALL_SECTOR_SIZE, 0x0808_0000); assert_sector(0x10, FlashBank::Bank2, 0, 0x0808_0000, SMALL_SECTOR_SIZE, 0x0808_3FFF); assert_sector(0x13, FlashBank::Bank2, 3, 0x0808_C000, SMALL_SECTOR_SIZE, 0x0808_C000); assert_sector(0x13, FlashBank::Bank2, 3, 0x0808_C000, SMALL_SECTOR_SIZE, 0x0808_FFFF); assert_sector(0x14, FlashBank::Bank2, 4, 0x0809_0000, MEDIUM_SECTOR_SIZE, 0x0809_0000); assert_sector(0x14, FlashBank::Bank2, 4, 0x0809_0000, MEDIUM_SECTOR_SIZE, 0x0809_FFFF); assert_sector(0x15, FlashBank::Bank2, 5, 0x080A_0000, LARGE_SECTOR_SIZE, 0x080A_0000); assert_sector(0x15, FlashBank::Bank2, 5, 0x080A_0000, LARGE_SECTOR_SIZE, 0x080B_FFFF); assert_sector(0x17, FlashBank::Bank2, 7, 0x080E_0000, LARGE_SECTOR_SIZE, 0x080E_0000); assert_sector(0x17, FlashBank::Bank2, 7, 0x080E_0000, LARGE_SECTOR_SIZE, 0x080F_FFFF); } } } #[cfg(all(bank_setup_configurable))] pub(crate) fn check_bank_setup() { if cfg!(feature = "single-bank") && pac::FLASH.optcr().read().db1m() { panic!("Embassy is configured as single-bank, but the hardware is running in dual-bank mode. Change the hardware by changing the db1m value in the user option bytes or configure embassy to use dual-bank config"); } if cfg!(feature = "dual-bank") && !pac::FLASH.optcr().read().db1m() { panic!("Embassy is configured as dual-bank, but the hardware is running in single-bank mode. Change the hardware by changing the db1m value in the user option bytes or configure embassy to use single-bank config"); } }