2024-07-11 15:34:34 +08:00

362 lines
11 KiB
Rust

#[allow(unused)]
#[cfg(stm32h7)]
use pac::adc::vals::{Adcaldif, Difsel, Exten};
#[allow(unused)]
#[cfg(stm32g4)]
use pac::adc::vals::{Adcaldif, Difsel, Exten, Rovsm, Trovs};
use pac::adccommon::vals::Presc;
use super::{blocking_delay_us, Adc, AdcChannel, Instance, Resolution, SampleTime};
use crate::time::Hertz;
use crate::{pac, rcc, Peripheral};
/// Default VREF voltage used for sample conversion to millivolts.
pub const VREF_DEFAULT_MV: u32 = 3300;
/// VREF voltage used for factory calibration of VREFINTCAL register.
pub const VREF_CALIB_MV: u32 = 3300;
/// Max single ADC operation clock frequency
#[cfg(stm32g4)]
const MAX_ADC_CLK_FREQ: Hertz = Hertz::mhz(60);
#[cfg(stm32h7)]
const MAX_ADC_CLK_FREQ: Hertz = Hertz::mhz(50);
#[cfg(stm32g4)]
const VREF_CHANNEL: u8 = 18;
#[cfg(stm32g4)]
const TEMP_CHANNEL: u8 = 16;
#[cfg(stm32h7)]
const VREF_CHANNEL: u8 = 19;
#[cfg(stm32h7)]
const TEMP_CHANNEL: u8 = 18;
// TODO this should be 14 for H7a/b/35
const VBAT_CHANNEL: u8 = 17;
// NOTE: Vrefint/Temperature/Vbat are not available on all ADCs, this currently cannot be modeled with stm32-data, so these are available from the software on all ADCs
/// Internal voltage reference channel.
pub struct VrefInt;
impl<T: Instance> AdcChannel<T> for VrefInt {}
impl<T: Instance> super::SealedAdcChannel<T> for VrefInt {
fn channel(&self) -> u8 {
VREF_CHANNEL
}
}
/// Internal temperature channel.
pub struct Temperature;
impl<T: Instance> AdcChannel<T> for Temperature {}
impl<T: Instance> super::SealedAdcChannel<T> for Temperature {
fn channel(&self) -> u8 {
TEMP_CHANNEL
}
}
/// Internal battery voltage channel.
pub struct Vbat;
impl<T: Instance> AdcChannel<T> for Vbat {}
impl<T: Instance> super::SealedAdcChannel<T> for Vbat {
fn channel(&self) -> u8 {
VBAT_CHANNEL
}
}
// NOTE (unused): The prescaler enum closely copies the hardware capabilities,
// but high prescaling doesn't make a lot of sense in the current implementation and is ommited.
#[allow(unused)]
enum Prescaler {
NotDivided,
DividedBy2,
DividedBy4,
DividedBy6,
DividedBy8,
DividedBy10,
DividedBy12,
DividedBy16,
DividedBy32,
DividedBy64,
DividedBy128,
DividedBy256,
}
impl Prescaler {
fn from_ker_ck(frequency: Hertz) -> Self {
let raw_prescaler = frequency.0 / MAX_ADC_CLK_FREQ.0;
match raw_prescaler {
0 => Self::NotDivided,
1 => Self::DividedBy2,
2..=3 => Self::DividedBy4,
4..=5 => Self::DividedBy6,
6..=7 => Self::DividedBy8,
8..=9 => Self::DividedBy10,
10..=11 => Self::DividedBy12,
_ => unimplemented!(),
}
}
fn divisor(&self) -> u32 {
match self {
Prescaler::NotDivided => 1,
Prescaler::DividedBy2 => 2,
Prescaler::DividedBy4 => 4,
Prescaler::DividedBy6 => 6,
Prescaler::DividedBy8 => 8,
Prescaler::DividedBy10 => 10,
Prescaler::DividedBy12 => 12,
Prescaler::DividedBy16 => 16,
Prescaler::DividedBy32 => 32,
Prescaler::DividedBy64 => 64,
Prescaler::DividedBy128 => 128,
Prescaler::DividedBy256 => 256,
}
}
fn presc(&self) -> Presc {
match self {
Prescaler::NotDivided => Presc::DIV1,
Prescaler::DividedBy2 => Presc::DIV2,
Prescaler::DividedBy4 => Presc::DIV4,
Prescaler::DividedBy6 => Presc::DIV6,
Prescaler::DividedBy8 => Presc::DIV8,
Prescaler::DividedBy10 => Presc::DIV10,
Prescaler::DividedBy12 => Presc::DIV12,
Prescaler::DividedBy16 => Presc::DIV16,
Prescaler::DividedBy32 => Presc::DIV32,
Prescaler::DividedBy64 => Presc::DIV64,
Prescaler::DividedBy128 => Presc::DIV128,
Prescaler::DividedBy256 => Presc::DIV256,
}
}
}
impl<'d, T: Instance> Adc<'d, T> {
/// Create a new ADC driver.
pub fn new(adc: impl Peripheral<P = T> + 'd) -> Self {
embassy_hal_internal::into_ref!(adc);
rcc::enable_and_reset::<T>();
let prescaler = Prescaler::from_ker_ck(T::frequency());
T::common_regs().ccr().modify(|w| w.set_presc(prescaler.presc()));
let frequency = Hertz(T::frequency().0 / prescaler.divisor());
info!("ADC frequency set to {} Hz", frequency.0);
if frequency > MAX_ADC_CLK_FREQ {
panic!("Maximal allowed frequency for the ADC is {} MHz and it varies with different packages, refer to ST docs for more information.", MAX_ADC_CLK_FREQ.0 / 1_000_000 );
}
let mut s = Self {
adc,
sample_time: SampleTime::from_bits(0),
};
s.power_up();
s.configure_differential_inputs();
s.calibrate();
blocking_delay_us(1);
s.enable();
s.configure();
s
}
fn power_up(&mut self) {
T::regs().cr().modify(|reg| {
reg.set_deeppwd(false);
reg.set_advregen(true);
});
blocking_delay_us(10);
}
fn configure_differential_inputs(&mut self) {
T::regs().difsel().modify(|w| {
for n in 0..18 {
w.set_difsel(n, Difsel::SINGLEENDED);
}
});
}
fn calibrate(&mut self) {
T::regs().cr().modify(|w| {
w.set_adcaldif(Adcaldif::SINGLEENDED);
});
T::regs().cr().modify(|w| w.set_adcal(true));
while T::regs().cr().read().adcal() {}
}
fn enable(&mut self) {
T::regs().isr().write(|w| w.set_adrdy(true));
T::regs().cr().modify(|w| w.set_aden(true));
while !T::regs().isr().read().adrdy() {}
T::regs().isr().write(|w| w.set_adrdy(true));
}
fn configure(&mut self) {
// single conversion mode, software trigger
T::regs().cfgr().modify(|w| {
w.set_cont(false);
w.set_exten(Exten::DISABLED);
});
}
/// Enable reading the voltage reference internal channel.
pub fn enable_vrefint(&self) -> VrefInt {
T::common_regs().ccr().modify(|reg| {
reg.set_vrefen(true);
});
VrefInt {}
}
/// Enable reading the temperature internal channel.
pub fn enable_temperature(&self) -> Temperature {
T::common_regs().ccr().modify(|reg| {
reg.set_vsenseen(true);
});
Temperature {}
}
/// Enable reading the vbat internal channel.
pub fn enable_vbat(&self) -> Vbat {
T::common_regs().ccr().modify(|reg| {
reg.set_vbaten(true);
});
Vbat {}
}
/// Enable differential channel.
/// Caution:
/// : When configuring the channel “i” in differential input mode, its negative input voltage VINN[i]
/// is connected to another channel. As a consequence, this channel is no longer usable in
/// single-ended mode or in differential mode and must never be configured to be converted.
/// Some channels are shared between ADC1/ADC2/ADC3/ADC4/ADC5: this can make the
/// channel on the other ADC unusable. The only exception is when ADC master and the slave
/// operate in interleaved mode.
#[cfg(stm32g4)]
pub fn set_differential_channel(&mut self, ch: usize, enable: bool) {
T::regs().cr().modify(|w| w.set_aden(false)); // disable adc
T::regs().difsel().modify(|w| {
w.set_difsel(
ch,
if enable {
Difsel::DIFFERENTIAL
} else {
Difsel::SINGLEENDED
},
);
});
T::regs().cr().modify(|w| w.set_aden(true));
}
#[cfg(stm32g4)]
pub fn set_differential(&mut self, channel: &mut impl AdcChannel<T>, enable: bool) {
self.set_differential_channel(channel.channel() as usize, enable);
}
/// Set oversampling shift.
#[cfg(stm32g4)]
pub fn set_oversampling_shift(&mut self, shift: u8) {
T::regs().cfgr2().modify(|reg| reg.set_ovss(shift));
}
/// Set oversampling ratio.
#[cfg(stm32g4)]
pub fn set_oversampling_ratio(&mut self, ratio: u8) {
T::regs().cfgr2().modify(|reg| reg.set_ovsr(ratio));
}
/// Enable oversampling in regular mode.
#[cfg(stm32g4)]
pub fn enable_regular_oversampling_mode(&mut self, mode: Rovsm, trig_mode: Trovs, enable: bool) {
T::regs().cfgr2().modify(|reg| reg.set_trovs(trig_mode));
T::regs().cfgr2().modify(|reg| reg.set_rovsm(mode));
T::regs().cfgr2().modify(|reg| reg.set_rovse(enable));
}
// Reads that are not implemented as INJECTED in "blocking_read"
// #[cfg(stm32g4)]
// pub fn enalble_injected_oversampling_mode(&mut self, enable: bool) {
// T::regs().cfgr2().modify(|reg| reg.set_jovse(enable));
// }
// #[cfg(stm32g4)]
// pub fn enable_oversampling_regular_injected_mode(&mut self, enable: bool) {
// // the regularoversampling mode is forced to resumed mode (ROVSM bit ignored),
// T::regs().cfgr2().modify(|reg| reg.set_rovse(enable));
// T::regs().cfgr2().modify(|reg| reg.set_jovse(enable));
// }
/// Set the ADC sample time.
pub fn set_sample_time(&mut self, sample_time: SampleTime) {
self.sample_time = sample_time;
}
/// Set the ADC resolution.
pub fn set_resolution(&mut self, resolution: Resolution) {
T::regs().cfgr().modify(|reg| reg.set_res(resolution.into()));
}
/// Perform a single conversion.
fn convert(&mut self) -> u16 {
T::regs().isr().modify(|reg| {
reg.set_eos(true);
reg.set_eoc(true);
});
// Start conversion
T::regs().cr().modify(|reg| {
reg.set_adstart(true);
});
while !T::regs().isr().read().eos() {
// spin
}
T::regs().dr().read().0 as u16
}
/// Read an ADC pin.
pub fn blocking_read(&mut self, channel: &mut impl AdcChannel<T>) -> u16 {
channel.setup();
self.read_channel(channel.channel())
}
fn read_channel(&mut self, channel: u8) -> u16 {
// Configure channel
Self::set_channel_sample_time(channel, self.sample_time);
#[cfg(stm32h7)]
{
T::regs().cfgr2().modify(|w| w.set_lshift(0));
T::regs()
.pcsel()
.write(|w| w.set_pcsel(channel as _, Pcsel::PRESELECTED));
}
T::regs().sqr1().write(|reg| {
reg.set_sq(0, channel);
reg.set_l(0);
});
self.convert()
}
fn set_channel_sample_time(ch: u8, sample_time: SampleTime) {
let sample_time = sample_time.into();
if ch <= 9 {
T::regs().smpr().modify(|reg| reg.set_smp(ch as _, sample_time));
} else {
T::regs().smpr2().modify(|reg| reg.set_smp((ch - 10) as _, sample_time));
}
}
}