#[allow(unused)] #[cfg(stm32h7)] use pac::adc::vals::{Adcaldif, Difsel, Exten}; #[allow(unused)] #[cfg(stm32g4)] use pac::adc::vals::{Adcaldif, Difsel, Exten, Rovsm, Trovs}; use pac::adccommon::vals::Presc; use super::{blocking_delay_us, Adc, AdcChannel, Instance, Resolution, SampleTime}; use crate::time::Hertz; use crate::{pac, rcc, Peripheral}; /// Default VREF voltage used for sample conversion to millivolts. pub const VREF_DEFAULT_MV: u32 = 3300; /// VREF voltage used for factory calibration of VREFINTCAL register. pub const VREF_CALIB_MV: u32 = 3300; /// Max single ADC operation clock frequency #[cfg(stm32g4)] const MAX_ADC_CLK_FREQ: Hertz = Hertz::mhz(60); #[cfg(stm32h7)] const MAX_ADC_CLK_FREQ: Hertz = Hertz::mhz(50); #[cfg(stm32g4)] const VREF_CHANNEL: u8 = 18; #[cfg(stm32g4)] const TEMP_CHANNEL: u8 = 16; #[cfg(stm32h7)] const VREF_CHANNEL: u8 = 19; #[cfg(stm32h7)] const TEMP_CHANNEL: u8 = 18; // TODO this should be 14 for H7a/b/35 const VBAT_CHANNEL: u8 = 17; // NOTE: Vrefint/Temperature/Vbat are not available on all ADCs, this currently cannot be modeled with stm32-data, so these are available from the software on all ADCs /// Internal voltage reference channel. pub struct VrefInt; impl AdcChannel for VrefInt {} impl super::SealedAdcChannel for VrefInt { fn channel(&self) -> u8 { VREF_CHANNEL } } /// Internal temperature channel. pub struct Temperature; impl AdcChannel for Temperature {} impl super::SealedAdcChannel for Temperature { fn channel(&self) -> u8 { TEMP_CHANNEL } } /// Internal battery voltage channel. pub struct Vbat; impl AdcChannel for Vbat {} impl super::SealedAdcChannel for Vbat { fn channel(&self) -> u8 { VBAT_CHANNEL } } // NOTE (unused): The prescaler enum closely copies the hardware capabilities, // but high prescaling doesn't make a lot of sense in the current implementation and is ommited. #[allow(unused)] enum Prescaler { NotDivided, DividedBy2, DividedBy4, DividedBy6, DividedBy8, DividedBy10, DividedBy12, DividedBy16, DividedBy32, DividedBy64, DividedBy128, DividedBy256, } impl Prescaler { fn from_ker_ck(frequency: Hertz) -> Self { let raw_prescaler = frequency.0 / MAX_ADC_CLK_FREQ.0; match raw_prescaler { 0 => Self::NotDivided, 1 => Self::DividedBy2, 2..=3 => Self::DividedBy4, 4..=5 => Self::DividedBy6, 6..=7 => Self::DividedBy8, 8..=9 => Self::DividedBy10, 10..=11 => Self::DividedBy12, _ => unimplemented!(), } } fn divisor(&self) -> u32 { match self { Prescaler::NotDivided => 1, Prescaler::DividedBy2 => 2, Prescaler::DividedBy4 => 4, Prescaler::DividedBy6 => 6, Prescaler::DividedBy8 => 8, Prescaler::DividedBy10 => 10, Prescaler::DividedBy12 => 12, Prescaler::DividedBy16 => 16, Prescaler::DividedBy32 => 32, Prescaler::DividedBy64 => 64, Prescaler::DividedBy128 => 128, Prescaler::DividedBy256 => 256, } } fn presc(&self) -> Presc { match self { Prescaler::NotDivided => Presc::DIV1, Prescaler::DividedBy2 => Presc::DIV2, Prescaler::DividedBy4 => Presc::DIV4, Prescaler::DividedBy6 => Presc::DIV6, Prescaler::DividedBy8 => Presc::DIV8, Prescaler::DividedBy10 => Presc::DIV10, Prescaler::DividedBy12 => Presc::DIV12, Prescaler::DividedBy16 => Presc::DIV16, Prescaler::DividedBy32 => Presc::DIV32, Prescaler::DividedBy64 => Presc::DIV64, Prescaler::DividedBy128 => Presc::DIV128, Prescaler::DividedBy256 => Presc::DIV256, } } } impl<'d, T: Instance> Adc<'d, T> { /// Create a new ADC driver. pub fn new(adc: impl Peripheral

+ 'd) -> Self { embassy_hal_internal::into_ref!(adc); rcc::enable_and_reset::(); let prescaler = Prescaler::from_ker_ck(T::frequency()); T::common_regs().ccr().modify(|w| w.set_presc(prescaler.presc())); let frequency = Hertz(T::frequency().0 / prescaler.divisor()); info!("ADC frequency set to {} Hz", frequency.0); if frequency > MAX_ADC_CLK_FREQ { panic!("Maximal allowed frequency for the ADC is {} MHz and it varies with different packages, refer to ST docs for more information.", MAX_ADC_CLK_FREQ.0 / 1_000_000 ); } let mut s = Self { adc, sample_time: SampleTime::from_bits(0), }; s.power_up(); s.configure_differential_inputs(); s.calibrate(); blocking_delay_us(1); s.enable(); s.configure(); s } fn power_up(&mut self) { T::regs().cr().modify(|reg| { reg.set_deeppwd(false); reg.set_advregen(true); }); blocking_delay_us(10); } fn configure_differential_inputs(&mut self) { T::regs().difsel().modify(|w| { for n in 0..18 { w.set_difsel(n, Difsel::SINGLEENDED); } }); } fn calibrate(&mut self) { T::regs().cr().modify(|w| { w.set_adcaldif(Adcaldif::SINGLEENDED); }); T::regs().cr().modify(|w| w.set_adcal(true)); while T::regs().cr().read().adcal() {} } fn enable(&mut self) { T::regs().isr().write(|w| w.set_adrdy(true)); T::regs().cr().modify(|w| w.set_aden(true)); while !T::regs().isr().read().adrdy() {} T::regs().isr().write(|w| w.set_adrdy(true)); } fn configure(&mut self) { // single conversion mode, software trigger T::regs().cfgr().modify(|w| { w.set_cont(false); w.set_exten(Exten::DISABLED); }); } /// Enable reading the voltage reference internal channel. pub fn enable_vrefint(&self) -> VrefInt { T::common_regs().ccr().modify(|reg| { reg.set_vrefen(true); }); VrefInt {} } /// Enable reading the temperature internal channel. pub fn enable_temperature(&self) -> Temperature { T::common_regs().ccr().modify(|reg| { reg.set_vsenseen(true); }); Temperature {} } /// Enable reading the vbat internal channel. pub fn enable_vbat(&self) -> Vbat { T::common_regs().ccr().modify(|reg| { reg.set_vbaten(true); }); Vbat {} } /// Enable differential channel. /// Caution: /// : When configuring the channel ā€œiā€ in differential input mode, its negative input voltage VINN[i] /// is connected to another channel. As a consequence, this channel is no longer usable in /// single-ended mode or in differential mode and must never be configured to be converted. /// Some channels are shared between ADC1/ADC2/ADC3/ADC4/ADC5: this can make the /// channel on the other ADC unusable. The only exception is when ADC master and the slave /// operate in interleaved mode. #[cfg(stm32g4)] pub fn set_differential_channel(&mut self, ch: usize, enable: bool) { T::regs().cr().modify(|w| w.set_aden(false)); // disable adc T::regs().difsel().modify(|w| { w.set_difsel( ch, if enable { Difsel::DIFFERENTIAL } else { Difsel::SINGLEENDED }, ); }); T::regs().cr().modify(|w| w.set_aden(true)); } #[cfg(stm32g4)] pub fn set_differential(&mut self, channel: &mut impl AdcChannel, enable: bool) { self.set_differential_channel(channel.channel() as usize, enable); } /// Set oversampling shift. #[cfg(stm32g4)] pub fn set_oversampling_shift(&mut self, shift: u8) { T::regs().cfgr2().modify(|reg| reg.set_ovss(shift)); } /// Set oversampling ratio. #[cfg(stm32g4)] pub fn set_oversampling_ratio(&mut self, ratio: u8) { T::regs().cfgr2().modify(|reg| reg.set_ovsr(ratio)); } /// Enable oversampling in regular mode. #[cfg(stm32g4)] pub fn enable_regular_oversampling_mode(&mut self, mode: Rovsm, trig_mode: Trovs, enable: bool) { T::regs().cfgr2().modify(|reg| reg.set_trovs(trig_mode)); T::regs().cfgr2().modify(|reg| reg.set_rovsm(mode)); T::regs().cfgr2().modify(|reg| reg.set_rovse(enable)); } // Reads that are not implemented as INJECTED in "blocking_read" // #[cfg(stm32g4)] // pub fn enalble_injected_oversampling_mode(&mut self, enable: bool) { // T::regs().cfgr2().modify(|reg| reg.set_jovse(enable)); // } // #[cfg(stm32g4)] // pub fn enable_oversampling_regular_injected_mode(&mut self, enable: bool) { // // the regularoversampling mode is forced to resumed mode (ROVSM bit ignored), // T::regs().cfgr2().modify(|reg| reg.set_rovse(enable)); // T::regs().cfgr2().modify(|reg| reg.set_jovse(enable)); // } /// Set the ADC sample time. pub fn set_sample_time(&mut self, sample_time: SampleTime) { self.sample_time = sample_time; } /// Set the ADC resolution. pub fn set_resolution(&mut self, resolution: Resolution) { T::regs().cfgr().modify(|reg| reg.set_res(resolution.into())); } /// Perform a single conversion. fn convert(&mut self) -> u16 { T::regs().isr().modify(|reg| { reg.set_eos(true); reg.set_eoc(true); }); // Start conversion T::regs().cr().modify(|reg| { reg.set_adstart(true); }); while !T::regs().isr().read().eos() { // spin } T::regs().dr().read().0 as u16 } /// Read an ADC pin. pub fn blocking_read(&mut self, channel: &mut impl AdcChannel) -> u16 { channel.setup(); self.read_channel(channel.channel()) } fn read_channel(&mut self, channel: u8) -> u16 { // Configure channel Self::set_channel_sample_time(channel, self.sample_time); #[cfg(stm32h7)] { T::regs().cfgr2().modify(|w| w.set_lshift(0)); T::regs() .pcsel() .write(|w| w.set_pcsel(channel as _, Pcsel::PRESELECTED)); } T::regs().sqr1().write(|reg| { reg.set_sq(0, channel); reg.set_l(0); }); self.convert() } fn set_channel_sample_time(ch: u8, sample_time: SampleTime) { let sample_time = sample_time.into(); if ch <= 9 { T::regs().smpr().modify(|reg| reg.set_smp(ch as _, sample_time)); } else { T::regs().smpr2().modify(|reg| reg.set_smp((ch - 10) as _, sample_time)); } } }