921 lines
33 KiB
Rust
921 lines
33 KiB
Rust
//! TCP sockets.
|
||
//!
|
||
//! # Listening
|
||
//!
|
||
//! `embassy-net` does not have a `TcpListener`. Instead, individual `TcpSocket`s can be put into
|
||
//! listening mode by calling [`TcpSocket::accept`].
|
||
//!
|
||
//! Incoming connections when no socket is listening are rejected. To accept many incoming
|
||
//! connections, create many sockets and put them all into listening mode.
|
||
|
||
use core::future::{poll_fn, Future};
|
||
use core::mem;
|
||
use core::task::{Context, Poll};
|
||
|
||
use embassy_time::Duration;
|
||
use smoltcp::iface::{Interface, SocketHandle};
|
||
use smoltcp::socket::tcp;
|
||
pub use smoltcp::socket::tcp::State;
|
||
use smoltcp::wire::{IpEndpoint, IpListenEndpoint};
|
||
|
||
use crate::time::duration_to_smoltcp;
|
||
use crate::Stack;
|
||
|
||
/// Error returned by TcpSocket read/write functions.
|
||
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
|
||
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
||
pub enum Error {
|
||
/// The connection was reset.
|
||
///
|
||
/// This can happen on receiving a RST packet, or on timeout.
|
||
ConnectionReset,
|
||
}
|
||
|
||
/// Error returned by [`TcpSocket::connect`].
|
||
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
|
||
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
||
pub enum ConnectError {
|
||
/// The socket is already connected or listening.
|
||
InvalidState,
|
||
/// The remote host rejected the connection with a RST packet.
|
||
ConnectionReset,
|
||
/// Connect timed out.
|
||
TimedOut,
|
||
/// No route to host.
|
||
NoRoute,
|
||
}
|
||
|
||
/// Error returned by [`TcpSocket::accept`].
|
||
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
|
||
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
||
pub enum AcceptError {
|
||
/// The socket is already connected or listening.
|
||
InvalidState,
|
||
/// Invalid listen port
|
||
InvalidPort,
|
||
/// The remote host rejected the connection with a RST packet.
|
||
ConnectionReset,
|
||
}
|
||
|
||
/// A TCP socket.
|
||
pub struct TcpSocket<'a> {
|
||
io: TcpIo<'a>,
|
||
}
|
||
|
||
/// The reader half of a TCP socket.
|
||
pub struct TcpReader<'a> {
|
||
io: TcpIo<'a>,
|
||
}
|
||
|
||
/// The writer half of a TCP socket.
|
||
pub struct TcpWriter<'a> {
|
||
io: TcpIo<'a>,
|
||
}
|
||
|
||
impl<'a> TcpReader<'a> {
|
||
/// Wait until the socket becomes readable.
|
||
///
|
||
/// A socket becomes readable when the receive half of the full-duplex connection is open
|
||
/// (see [`may_recv()`](TcpSocket::may_recv)), and there is some pending data in the receive buffer.
|
||
///
|
||
/// This is the equivalent of [read](#method.read), without buffering any data.
|
||
pub fn wait_read_ready(&self) -> impl Future<Output = ()> + '_ {
|
||
poll_fn(move |cx| self.io.poll_read_ready(cx))
|
||
}
|
||
|
||
/// Read data from the socket.
|
||
///
|
||
/// Returns how many bytes were read, or an error. If no data is available, it waits
|
||
/// until there is at least one byte available.
|
||
///
|
||
/// # Note
|
||
/// A return value of Ok(0) means that we have read all data and the remote
|
||
/// side has closed our receive half of the socket. The remote can no longer
|
||
/// send bytes.
|
||
///
|
||
/// The send half of the socket is still open. If you want to reconnect using
|
||
/// the socket you split this reader off the send half needs to be closed using
|
||
/// [`abort()`](TcpSocket::abort).
|
||
pub async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Error> {
|
||
self.io.read(buf).await
|
||
}
|
||
|
||
/// Call `f` with the largest contiguous slice of octets in the receive buffer,
|
||
/// and dequeue the amount of elements returned by `f`.
|
||
///
|
||
/// If no data is available, it waits until there is at least one byte available.
|
||
pub async fn read_with<F, R>(&mut self, f: F) -> Result<R, Error>
|
||
where
|
||
F: FnOnce(&mut [u8]) -> (usize, R),
|
||
{
|
||
self.io.read_with(f).await
|
||
}
|
||
|
||
/// Return the maximum number of bytes inside the transmit buffer.
|
||
pub fn recv_capacity(&self) -> usize {
|
||
self.io.recv_capacity()
|
||
}
|
||
|
||
/// Return the amount of octets queued in the receive buffer. This value can be larger than
|
||
/// the slice read by the next `recv` or `peek` call because it includes all queued octets,
|
||
/// and not only the octets that may be returned as a contiguous slice.
|
||
pub fn recv_queue(&self) -> usize {
|
||
self.io.recv_queue()
|
||
}
|
||
}
|
||
|
||
impl<'a> TcpWriter<'a> {
|
||
/// Wait until the socket becomes writable.
|
||
///
|
||
/// A socket becomes writable when the transmit half of the full-duplex connection is open
|
||
/// (see [`may_send()`](TcpSocket::may_send)), and the transmit buffer is not full.
|
||
///
|
||
/// This is the equivalent of [write](#method.write), without sending any data.
|
||
pub fn wait_write_ready(&self) -> impl Future<Output = ()> + '_ {
|
||
poll_fn(move |cx| self.io.poll_write_ready(cx))
|
||
}
|
||
|
||
/// Write data to the socket.
|
||
///
|
||
/// Returns how many bytes were written, or an error. If the socket is not ready to
|
||
/// accept data, it waits until it is.
|
||
pub fn write<'s>(&'s mut self, buf: &'s [u8]) -> impl Future<Output = Result<usize, Error>> + 's {
|
||
self.io.write(buf)
|
||
}
|
||
|
||
/// Flushes the written data to the socket.
|
||
///
|
||
/// This waits until all data has been sent, and ACKed by the remote host. For a connection
|
||
/// closed with [`abort()`](TcpSocket::abort) it will wait for the TCP RST packet to be sent.
|
||
pub fn flush(&mut self) -> impl Future<Output = Result<(), Error>> + '_ {
|
||
self.io.flush()
|
||
}
|
||
|
||
/// Call `f` with the largest contiguous slice of octets in the transmit buffer,
|
||
/// and enqueue the amount of elements returned by `f`.
|
||
///
|
||
/// If the socket is not ready to accept data, it waits until it is.
|
||
pub async fn write_with<F, R>(&mut self, f: F) -> Result<R, Error>
|
||
where
|
||
F: FnOnce(&mut [u8]) -> (usize, R),
|
||
{
|
||
self.io.write_with(f).await
|
||
}
|
||
|
||
/// Return the maximum number of bytes inside the transmit buffer.
|
||
pub fn send_capacity(&self) -> usize {
|
||
self.io.send_capacity()
|
||
}
|
||
|
||
/// Return the amount of octets queued in the transmit buffer.
|
||
pub fn send_queue(&self) -> usize {
|
||
self.io.send_queue()
|
||
}
|
||
}
|
||
|
||
impl<'a> TcpSocket<'a> {
|
||
/// Create a new TCP socket on the given stack, with the given buffers.
|
||
pub fn new(stack: Stack<'a>, rx_buffer: &'a mut [u8], tx_buffer: &'a mut [u8]) -> Self {
|
||
let handle = stack.with_mut(|i| {
|
||
let rx_buffer: &'static mut [u8] = unsafe { mem::transmute(rx_buffer) };
|
||
let tx_buffer: &'static mut [u8] = unsafe { mem::transmute(tx_buffer) };
|
||
i.sockets.add(tcp::Socket::new(
|
||
tcp::SocketBuffer::new(rx_buffer),
|
||
tcp::SocketBuffer::new(tx_buffer),
|
||
))
|
||
});
|
||
|
||
Self {
|
||
io: TcpIo { stack, handle },
|
||
}
|
||
}
|
||
|
||
/// Return the maximum number of bytes inside the recv buffer.
|
||
pub fn recv_capacity(&self) -> usize {
|
||
self.io.recv_capacity()
|
||
}
|
||
|
||
/// Return the maximum number of bytes inside the transmit buffer.
|
||
pub fn send_capacity(&self) -> usize {
|
||
self.io.send_capacity()
|
||
}
|
||
|
||
/// Return the amount of octets queued in the transmit buffer.
|
||
pub fn send_queue(&self) -> usize {
|
||
self.io.send_queue()
|
||
}
|
||
|
||
/// Return the amount of octets queued in the receive buffer. This value can be larger than
|
||
/// the slice read by the next `recv` or `peek` call because it includes all queued octets,
|
||
/// and not only the octets that may be returned as a contiguous slice.
|
||
pub fn recv_queue(&self) -> usize {
|
||
self.io.recv_queue()
|
||
}
|
||
|
||
/// Call `f` with the largest contiguous slice of octets in the transmit buffer,
|
||
/// and enqueue the amount of elements returned by `f`.
|
||
///
|
||
/// If the socket is not ready to accept data, it waits until it is.
|
||
pub async fn write_with<F, R>(&mut self, f: F) -> Result<R, Error>
|
||
where
|
||
F: FnOnce(&mut [u8]) -> (usize, R),
|
||
{
|
||
self.io.write_with(f).await
|
||
}
|
||
|
||
/// Call `f` with the largest contiguous slice of octets in the receive buffer,
|
||
/// and dequeue the amount of elements returned by `f`.
|
||
///
|
||
/// If no data is available, it waits until there is at least one byte available.
|
||
pub async fn read_with<F, R>(&mut self, f: F) -> Result<R, Error>
|
||
where
|
||
F: FnOnce(&mut [u8]) -> (usize, R),
|
||
{
|
||
self.io.read_with(f).await
|
||
}
|
||
|
||
/// Split the socket into reader and a writer halves.
|
||
pub fn split(&mut self) -> (TcpReader<'_>, TcpWriter<'_>) {
|
||
(TcpReader { io: self.io }, TcpWriter { io: self.io })
|
||
}
|
||
|
||
/// Connect to a remote host.
|
||
pub async fn connect<T>(&mut self, remote_endpoint: T) -> Result<(), ConnectError>
|
||
where
|
||
T: Into<IpEndpoint>,
|
||
{
|
||
let local_port = self.io.stack.with_mut(|i| i.get_local_port());
|
||
|
||
match {
|
||
self.io
|
||
.with_mut(|s, i| s.connect(i.context(), remote_endpoint, local_port))
|
||
} {
|
||
Ok(()) => {}
|
||
Err(tcp::ConnectError::InvalidState) => return Err(ConnectError::InvalidState),
|
||
Err(tcp::ConnectError::Unaddressable) => return Err(ConnectError::NoRoute),
|
||
}
|
||
|
||
poll_fn(|cx| {
|
||
self.io.with_mut(|s, _| match s.state() {
|
||
tcp::State::Closed | tcp::State::TimeWait => Poll::Ready(Err(ConnectError::ConnectionReset)),
|
||
tcp::State::Listen => unreachable!(),
|
||
tcp::State::SynSent | tcp::State::SynReceived => {
|
||
s.register_send_waker(cx.waker());
|
||
Poll::Pending
|
||
}
|
||
_ => Poll::Ready(Ok(())),
|
||
})
|
||
})
|
||
.await
|
||
}
|
||
|
||
/// Accept a connection from a remote host.
|
||
///
|
||
/// This function puts the socket in listening mode, and waits until a connection is received.
|
||
pub async fn accept<T>(&mut self, local_endpoint: T) -> Result<(), AcceptError>
|
||
where
|
||
T: Into<IpListenEndpoint>,
|
||
{
|
||
match self.io.with_mut(|s, _| s.listen(local_endpoint)) {
|
||
Ok(()) => {}
|
||
Err(tcp::ListenError::InvalidState) => return Err(AcceptError::InvalidState),
|
||
Err(tcp::ListenError::Unaddressable) => return Err(AcceptError::InvalidPort),
|
||
}
|
||
|
||
poll_fn(|cx| {
|
||
self.io.with_mut(|s, _| match s.state() {
|
||
tcp::State::Listen | tcp::State::SynSent | tcp::State::SynReceived => {
|
||
s.register_send_waker(cx.waker());
|
||
Poll::Pending
|
||
}
|
||
_ => Poll::Ready(Ok(())),
|
||
})
|
||
})
|
||
.await
|
||
}
|
||
|
||
/// Wait until the socket becomes readable.
|
||
///
|
||
/// A socket becomes readable when the receive half of the full-duplex connection is open
|
||
/// (see [may_recv](#method.may_recv)), and there is some pending data in the receive buffer.
|
||
///
|
||
/// This is the equivalent of [read](#method.read), without buffering any data.
|
||
pub fn wait_read_ready(&self) -> impl Future<Output = ()> + '_ {
|
||
poll_fn(move |cx| self.io.poll_read_ready(cx))
|
||
}
|
||
|
||
/// Read data from the socket.
|
||
///
|
||
/// Returns how many bytes were read, or an error. If no data is available, it waits
|
||
/// until there is at least one byte available.
|
||
///
|
||
/// A return value of Ok(0) means that the socket was closed and is longer
|
||
/// able to receive any data.
|
||
pub fn read<'s>(&'s mut self, buf: &'s mut [u8]) -> impl Future<Output = Result<usize, Error>> + 's {
|
||
self.io.read(buf)
|
||
}
|
||
|
||
/// Wait until the socket becomes writable.
|
||
///
|
||
/// A socket becomes writable when the transmit half of the full-duplex connection is open
|
||
/// (see [may_send](#method.may_send)), and the transmit buffer is not full.
|
||
///
|
||
/// This is the equivalent of [write](#method.write), without sending any data.
|
||
pub fn wait_write_ready(&self) -> impl Future<Output = ()> + '_ {
|
||
poll_fn(move |cx| self.io.poll_write_ready(cx))
|
||
}
|
||
|
||
/// Write data to the socket.
|
||
///
|
||
/// Returns how many bytes were written, or an error. If the socket is not ready to
|
||
/// accept data, it waits until it is.
|
||
pub fn write<'s>(&'s mut self, buf: &'s [u8]) -> impl Future<Output = Result<usize, Error>> + 's {
|
||
self.io.write(buf)
|
||
}
|
||
|
||
/// Flushes the written data to the socket.
|
||
///
|
||
/// This waits until all data has been sent, and ACKed by the remote host. For a connection
|
||
/// closed with [`abort()`](TcpSocket::abort) it will wait for the TCP RST packet to be sent.
|
||
pub fn flush(&mut self) -> impl Future<Output = Result<(), Error>> + '_ {
|
||
self.io.flush()
|
||
}
|
||
|
||
/// Set the timeout for the socket.
|
||
///
|
||
/// If the timeout is set, the socket will be closed if no data is received for the
|
||
/// specified duration.
|
||
///
|
||
/// # Note:
|
||
/// Set a keep alive interval ([`set_keep_alive`] to prevent timeouts when
|
||
/// the remote could still respond.
|
||
pub fn set_timeout(&mut self, duration: Option<Duration>) {
|
||
self.io
|
||
.with_mut(|s, _| s.set_timeout(duration.map(duration_to_smoltcp)))
|
||
}
|
||
|
||
/// Set the keep-alive interval for the socket.
|
||
///
|
||
/// If the keep-alive interval is set, the socket will send keep-alive packets after
|
||
/// the specified duration of inactivity.
|
||
///
|
||
/// If not set, the socket will not send keep-alive packets.
|
||
///
|
||
/// By setting a [`timeout`](Self::timeout) larger then the keep alive you
|
||
/// can detect a remote endpoint that no longer answers.
|
||
pub fn set_keep_alive(&mut self, interval: Option<Duration>) {
|
||
self.io
|
||
.with_mut(|s, _| s.set_keep_alive(interval.map(duration_to_smoltcp)))
|
||
}
|
||
|
||
/// Set the hop limit field in the IP header of sent packets.
|
||
pub fn set_hop_limit(&mut self, hop_limit: Option<u8>) {
|
||
self.io.with_mut(|s, _| s.set_hop_limit(hop_limit))
|
||
}
|
||
|
||
/// Get the local endpoint of the socket.
|
||
///
|
||
/// Returns `None` if the socket is not bound (listening) or not connected.
|
||
pub fn local_endpoint(&self) -> Option<IpEndpoint> {
|
||
self.io.with(|s, _| s.local_endpoint())
|
||
}
|
||
|
||
/// Get the remote endpoint of the socket.
|
||
///
|
||
/// Returns `None` if the socket is not connected.
|
||
pub fn remote_endpoint(&self) -> Option<IpEndpoint> {
|
||
self.io.with(|s, _| s.remote_endpoint())
|
||
}
|
||
|
||
/// Get the state of the socket.
|
||
pub fn state(&self) -> State {
|
||
self.io.with(|s, _| s.state())
|
||
}
|
||
|
||
/// Close the write half of the socket.
|
||
///
|
||
/// This closes only the write half of the socket. The read half side remains open, the
|
||
/// socket can still receive data.
|
||
///
|
||
/// Data that has been written to the socket and not yet sent (or not yet ACKed) will still
|
||
/// still sent. The last segment of the pending to send data is sent with the FIN flag set.
|
||
pub fn close(&mut self) {
|
||
self.io.with_mut(|s, _| s.close())
|
||
}
|
||
|
||
/// Forcibly close the socket.
|
||
///
|
||
/// This instantly closes both the read and write halves of the socket. Any pending data
|
||
/// that has not been sent will be lost.
|
||
///
|
||
/// Note that the TCP RST packet is not sent immediately - if the `TcpSocket` is dropped too soon
|
||
/// the remote host may not know the connection has been closed.
|
||
/// `abort()` callers should wait for a [`flush()`](TcpSocket::flush) call to complete before
|
||
/// dropping or reusing the socket.
|
||
pub fn abort(&mut self) {
|
||
self.io.with_mut(|s, _| s.abort())
|
||
}
|
||
|
||
/// Return whether the transmit half of the full-duplex connection is open.
|
||
///
|
||
/// This function returns true if it's possible to send data and have it arrive
|
||
/// to the remote endpoint. However, it does not make any guarantees about the state
|
||
/// of the transmit buffer, and even if it returns true, [write](#method.write) may
|
||
/// not be able to enqueue any octets.
|
||
///
|
||
/// In terms of the TCP state machine, the socket must be in the `ESTABLISHED` or
|
||
/// `CLOSE-WAIT` state.
|
||
pub fn may_send(&self) -> bool {
|
||
self.io.with(|s, _| s.may_send())
|
||
}
|
||
|
||
/// Check whether the transmit half of the full-duplex connection is open
|
||
/// (see [may_send](#method.may_send)), and the transmit buffer is not full.
|
||
pub fn can_send(&self) -> bool {
|
||
self.io.with(|s, _| s.can_send())
|
||
}
|
||
|
||
/// return whether the receive half of the full-duplex connection is open.
|
||
/// This function returns true if it’s possible to receive data from the remote endpoint.
|
||
/// It will return true while there is data in the receive buffer, and if there isn’t,
|
||
/// as long as the remote endpoint has not closed the connection.
|
||
pub fn may_recv(&self) -> bool {
|
||
self.io.with(|s, _| s.may_recv())
|
||
}
|
||
|
||
/// Get whether the socket is ready to receive data, i.e. whether there is some pending data in the receive buffer.
|
||
pub fn can_recv(&self) -> bool {
|
||
self.io.with(|s, _| s.can_recv())
|
||
}
|
||
}
|
||
|
||
impl<'a> Drop for TcpSocket<'a> {
|
||
fn drop(&mut self) {
|
||
self.io.stack.with_mut(|i| i.sockets.remove(self.io.handle));
|
||
}
|
||
}
|
||
|
||
fn _assert_covariant<'a, 'b: 'a>(x: TcpSocket<'b>) -> TcpSocket<'a> {
|
||
x
|
||
}
|
||
fn _assert_covariant_reader<'a, 'b: 'a>(x: TcpReader<'b>) -> TcpReader<'a> {
|
||
x
|
||
}
|
||
fn _assert_covariant_writer<'a, 'b: 'a>(x: TcpWriter<'b>) -> TcpWriter<'a> {
|
||
x
|
||
}
|
||
|
||
// =======================
|
||
|
||
#[derive(Copy, Clone)]
|
||
struct TcpIo<'a> {
|
||
stack: Stack<'a>,
|
||
handle: SocketHandle,
|
||
}
|
||
|
||
impl<'d> TcpIo<'d> {
|
||
fn with<R>(&self, f: impl FnOnce(&tcp::Socket, &Interface) -> R) -> R {
|
||
self.stack.with(|i| {
|
||
let socket = i.sockets.get::<tcp::Socket>(self.handle);
|
||
f(socket, &i.iface)
|
||
})
|
||
}
|
||
|
||
fn with_mut<R>(&self, f: impl FnOnce(&mut tcp::Socket, &mut Interface) -> R) -> R {
|
||
self.stack.with_mut(|i| {
|
||
let socket = i.sockets.get_mut::<tcp::Socket>(self.handle);
|
||
let res = f(socket, &mut i.iface);
|
||
i.waker.wake();
|
||
res
|
||
})
|
||
}
|
||
|
||
fn poll_read_ready(&self, cx: &mut Context<'_>) -> Poll<()> {
|
||
self.with_mut(|s, _| {
|
||
if s.can_recv() {
|
||
Poll::Ready(())
|
||
} else {
|
||
s.register_recv_waker(cx.waker());
|
||
Poll::Pending
|
||
}
|
||
})
|
||
}
|
||
|
||
fn read<'s>(&'s mut self, buf: &'s mut [u8]) -> impl Future<Output = Result<usize, Error>> + 's {
|
||
poll_fn(|cx| {
|
||
// CAUTION: smoltcp semantics around EOF are different to what you'd expect
|
||
// from posix-like IO, so we have to tweak things here.
|
||
self.with_mut(|s, _| match s.recv_slice(buf) {
|
||
// Reading into empty buffer
|
||
Ok(0) if buf.is_empty() => {
|
||
// embedded_io_async::Read's contract is to not block if buf is empty. While
|
||
// this function is not a direct implementor of the trait method, we still don't
|
||
// want our future to never resolve.
|
||
Poll::Ready(Ok(0))
|
||
}
|
||
// No data ready
|
||
Ok(0) => {
|
||
s.register_recv_waker(cx.waker());
|
||
Poll::Pending
|
||
}
|
||
// Data ready!
|
||
Ok(n) => Poll::Ready(Ok(n)),
|
||
// EOF
|
||
Err(tcp::RecvError::Finished) => Poll::Ready(Ok(0)),
|
||
// Connection reset. TODO: this can also be timeouts etc, investigate.
|
||
Err(tcp::RecvError::InvalidState) => Poll::Ready(Err(Error::ConnectionReset)),
|
||
})
|
||
})
|
||
}
|
||
|
||
fn poll_write_ready(&self, cx: &mut Context<'_>) -> Poll<()> {
|
||
self.with_mut(|s, _| {
|
||
if s.can_send() {
|
||
Poll::Ready(())
|
||
} else {
|
||
s.register_send_waker(cx.waker());
|
||
Poll::Pending
|
||
}
|
||
})
|
||
}
|
||
|
||
fn write<'s>(&'s mut self, buf: &'s [u8]) -> impl Future<Output = Result<usize, Error>> + 's {
|
||
poll_fn(|cx| {
|
||
self.with_mut(|s, _| match s.send_slice(buf) {
|
||
// Not ready to send (no space in the tx buffer)
|
||
Ok(0) => {
|
||
s.register_send_waker(cx.waker());
|
||
Poll::Pending
|
||
}
|
||
// Some data sent
|
||
Ok(n) => Poll::Ready(Ok(n)),
|
||
// Connection reset. TODO: this can also be timeouts etc, investigate.
|
||
Err(tcp::SendError::InvalidState) => Poll::Ready(Err(Error::ConnectionReset)),
|
||
})
|
||
})
|
||
}
|
||
|
||
async fn write_with<F, R>(&mut self, f: F) -> Result<R, Error>
|
||
where
|
||
F: FnOnce(&mut [u8]) -> (usize, R),
|
||
{
|
||
let mut f = Some(f);
|
||
poll_fn(move |cx| {
|
||
self.with_mut(|s, _| {
|
||
if !s.can_send() {
|
||
if s.may_send() {
|
||
// socket buffer is full wait until it has atleast one byte free
|
||
s.register_send_waker(cx.waker());
|
||
Poll::Pending
|
||
} else {
|
||
// if we can't transmit because the transmit half of the duplex connection is closed then return an error
|
||
Poll::Ready(Err(Error::ConnectionReset))
|
||
}
|
||
} else {
|
||
Poll::Ready(match s.send(unwrap!(f.take())) {
|
||
// Connection reset. TODO: this can also be timeouts etc, investigate.
|
||
Err(tcp::SendError::InvalidState) => Err(Error::ConnectionReset),
|
||
Ok(r) => Ok(r),
|
||
})
|
||
}
|
||
})
|
||
})
|
||
.await
|
||
}
|
||
|
||
async fn read_with<F, R>(&mut self, f: F) -> Result<R, Error>
|
||
where
|
||
F: FnOnce(&mut [u8]) -> (usize, R),
|
||
{
|
||
let mut f = Some(f);
|
||
poll_fn(move |cx| {
|
||
self.with_mut(|s, _| {
|
||
if !s.can_recv() {
|
||
if s.may_recv() {
|
||
// socket buffer is empty wait until it has atleast one byte has arrived
|
||
s.register_recv_waker(cx.waker());
|
||
Poll::Pending
|
||
} else {
|
||
// if we can't receive because the receive half of the duplex connection is closed then return an error
|
||
Poll::Ready(Err(Error::ConnectionReset))
|
||
}
|
||
} else {
|
||
Poll::Ready(match s.recv(unwrap!(f.take())) {
|
||
// Connection reset. TODO: this can also be timeouts etc, investigate.
|
||
Err(tcp::RecvError::Finished) | Err(tcp::RecvError::InvalidState) => {
|
||
Err(Error::ConnectionReset)
|
||
}
|
||
Ok(r) => Ok(r),
|
||
})
|
||
}
|
||
})
|
||
})
|
||
.await
|
||
}
|
||
|
||
fn flush(&mut self) -> impl Future<Output = Result<(), Error>> + '_ {
|
||
poll_fn(|cx| {
|
||
self.with_mut(|s, _| {
|
||
let data_pending = (s.send_queue() > 0) && s.state() != tcp::State::Closed;
|
||
let fin_pending = matches!(
|
||
s.state(),
|
||
tcp::State::FinWait1 | tcp::State::Closing | tcp::State::LastAck
|
||
);
|
||
let rst_pending = s.state() == tcp::State::Closed && s.remote_endpoint().is_some();
|
||
|
||
// If there are outstanding send operations, register for wake up and wait
|
||
// smoltcp issues wake-ups when octets are dequeued from the send buffer
|
||
if data_pending || fin_pending || rst_pending {
|
||
s.register_send_waker(cx.waker());
|
||
Poll::Pending
|
||
// No outstanding sends, socket is flushed
|
||
} else {
|
||
Poll::Ready(Ok(()))
|
||
}
|
||
})
|
||
})
|
||
}
|
||
|
||
fn recv_capacity(&self) -> usize {
|
||
self.with(|s, _| s.recv_capacity())
|
||
}
|
||
|
||
fn send_capacity(&self) -> usize {
|
||
self.with(|s, _| s.send_capacity())
|
||
}
|
||
|
||
fn send_queue(&self) -> usize {
|
||
self.with(|s, _| s.send_queue())
|
||
}
|
||
|
||
fn recv_queue(&self) -> usize {
|
||
self.with(|s, _| s.recv_queue())
|
||
}
|
||
}
|
||
|
||
mod embedded_io_impls {
|
||
use super::*;
|
||
|
||
impl embedded_io_async::Error for ConnectError {
|
||
fn kind(&self) -> embedded_io_async::ErrorKind {
|
||
match self {
|
||
ConnectError::ConnectionReset => embedded_io_async::ErrorKind::ConnectionReset,
|
||
ConnectError::TimedOut => embedded_io_async::ErrorKind::TimedOut,
|
||
ConnectError::NoRoute => embedded_io_async::ErrorKind::NotConnected,
|
||
ConnectError::InvalidState => embedded_io_async::ErrorKind::Other,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl embedded_io_async::Error for Error {
|
||
fn kind(&self) -> embedded_io_async::ErrorKind {
|
||
match self {
|
||
Error::ConnectionReset => embedded_io_async::ErrorKind::ConnectionReset,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<'d> embedded_io_async::ErrorType for TcpSocket<'d> {
|
||
type Error = Error;
|
||
}
|
||
|
||
impl<'d> embedded_io_async::Read for TcpSocket<'d> {
|
||
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
|
||
self.io.read(buf).await
|
||
}
|
||
}
|
||
|
||
impl<'d> embedded_io_async::ReadReady for TcpSocket<'d> {
|
||
fn read_ready(&mut self) -> Result<bool, Self::Error> {
|
||
Ok(self.io.with(|s, _| s.can_recv() || !s.may_recv()))
|
||
}
|
||
}
|
||
|
||
impl<'d> embedded_io_async::Write for TcpSocket<'d> {
|
||
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
|
||
self.io.write(buf).await
|
||
}
|
||
|
||
async fn flush(&mut self) -> Result<(), Self::Error> {
|
||
self.io.flush().await
|
||
}
|
||
}
|
||
|
||
impl<'d> embedded_io_async::WriteReady for TcpSocket<'d> {
|
||
fn write_ready(&mut self) -> Result<bool, Self::Error> {
|
||
Ok(self.io.with(|s, _| s.can_send()))
|
||
}
|
||
}
|
||
|
||
impl<'d> embedded_io_async::ErrorType for TcpReader<'d> {
|
||
type Error = Error;
|
||
}
|
||
|
||
impl<'d> embedded_io_async::Read for TcpReader<'d> {
|
||
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
|
||
self.io.read(buf).await
|
||
}
|
||
}
|
||
|
||
impl<'d> embedded_io_async::ReadReady for TcpReader<'d> {
|
||
fn read_ready(&mut self) -> Result<bool, Self::Error> {
|
||
Ok(self.io.with(|s, _| s.can_recv() || !s.may_recv()))
|
||
}
|
||
}
|
||
|
||
impl<'d> embedded_io_async::ErrorType for TcpWriter<'d> {
|
||
type Error = Error;
|
||
}
|
||
|
||
impl<'d> embedded_io_async::Write for TcpWriter<'d> {
|
||
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
|
||
self.io.write(buf).await
|
||
}
|
||
|
||
async fn flush(&mut self) -> Result<(), Self::Error> {
|
||
self.io.flush().await
|
||
}
|
||
}
|
||
|
||
impl<'d> embedded_io_async::WriteReady for TcpWriter<'d> {
|
||
fn write_ready(&mut self) -> Result<bool, Self::Error> {
|
||
Ok(self.io.with(|s, _| s.can_send()))
|
||
}
|
||
}
|
||
}
|
||
|
||
/// TCP client compatible with `embedded-nal-async` traits.
|
||
pub mod client {
|
||
use core::cell::{Cell, UnsafeCell};
|
||
use core::mem::MaybeUninit;
|
||
use core::net::IpAddr;
|
||
use core::ptr::NonNull;
|
||
|
||
use super::*;
|
||
|
||
/// TCP client connection pool compatible with `embedded-nal-async` traits.
|
||
///
|
||
/// The pool is capable of managing up to N concurrent connections with tx and rx buffers according to TX_SZ and RX_SZ.
|
||
pub struct TcpClient<'d, const N: usize, const TX_SZ: usize = 1024, const RX_SZ: usize = 1024> {
|
||
stack: Stack<'d>,
|
||
state: &'d TcpClientState<N, TX_SZ, RX_SZ>,
|
||
socket_timeout: Option<Duration>,
|
||
}
|
||
|
||
impl<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> TcpClient<'d, N, TX_SZ, RX_SZ> {
|
||
/// Create a new `TcpClient`.
|
||
pub fn new(stack: Stack<'d>, state: &'d TcpClientState<N, TX_SZ, RX_SZ>) -> Self {
|
||
Self {
|
||
stack,
|
||
state,
|
||
socket_timeout: None,
|
||
}
|
||
}
|
||
|
||
/// Set the timeout for each socket created by this `TcpClient`.
|
||
///
|
||
/// If the timeout is set, the socket will be closed if no data is received for the
|
||
/// specified duration.
|
||
pub fn set_timeout(&mut self, timeout: Option<Duration>) {
|
||
self.socket_timeout = timeout;
|
||
}
|
||
}
|
||
|
||
impl<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> embedded_nal_async::TcpConnect
|
||
for TcpClient<'d, N, TX_SZ, RX_SZ>
|
||
{
|
||
type Error = Error;
|
||
type Connection<'m>
|
||
= TcpConnection<'m, N, TX_SZ, RX_SZ>
|
||
where
|
||
Self: 'm;
|
||
|
||
async fn connect<'a>(&'a self, remote: core::net::SocketAddr) -> Result<Self::Connection<'a>, Self::Error> {
|
||
let addr: crate::IpAddress = match remote.ip() {
|
||
#[cfg(feature = "proto-ipv4")]
|
||
IpAddr::V4(addr) => crate::IpAddress::Ipv4(addr),
|
||
#[cfg(not(feature = "proto-ipv4"))]
|
||
IpAddr::V4(_) => panic!("ipv4 support not enabled"),
|
||
#[cfg(feature = "proto-ipv6")]
|
||
IpAddr::V6(addr) => crate::IpAddress::Ipv6(addr),
|
||
#[cfg(not(feature = "proto-ipv6"))]
|
||
IpAddr::V6(_) => panic!("ipv6 support not enabled"),
|
||
};
|
||
let remote_endpoint = (addr, remote.port());
|
||
let mut socket = TcpConnection::new(self.stack, self.state)?;
|
||
socket.socket.set_timeout(self.socket_timeout);
|
||
socket
|
||
.socket
|
||
.connect(remote_endpoint)
|
||
.await
|
||
.map_err(|_| Error::ConnectionReset)?;
|
||
Ok(socket)
|
||
}
|
||
}
|
||
|
||
/// Opened TCP connection in a [`TcpClient`].
|
||
pub struct TcpConnection<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> {
|
||
socket: TcpSocket<'d>,
|
||
state: &'d TcpClientState<N, TX_SZ, RX_SZ>,
|
||
bufs: NonNull<([u8; TX_SZ], [u8; RX_SZ])>,
|
||
}
|
||
|
||
impl<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> TcpConnection<'d, N, TX_SZ, RX_SZ> {
|
||
fn new(stack: Stack<'d>, state: &'d TcpClientState<N, TX_SZ, RX_SZ>) -> Result<Self, Error> {
|
||
let mut bufs = state.pool.alloc().ok_or(Error::ConnectionReset)?;
|
||
Ok(Self {
|
||
socket: unsafe { TcpSocket::new(stack, &mut bufs.as_mut().1, &mut bufs.as_mut().0) },
|
||
state,
|
||
bufs,
|
||
})
|
||
}
|
||
}
|
||
|
||
impl<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> Drop for TcpConnection<'d, N, TX_SZ, RX_SZ> {
|
||
fn drop(&mut self) {
|
||
unsafe {
|
||
self.socket.close();
|
||
self.state.pool.free(self.bufs);
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> embedded_io_async::ErrorType
|
||
for TcpConnection<'d, N, TX_SZ, RX_SZ>
|
||
{
|
||
type Error = Error;
|
||
}
|
||
|
||
impl<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> embedded_io_async::Read
|
||
for TcpConnection<'d, N, TX_SZ, RX_SZ>
|
||
{
|
||
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
|
||
self.socket.read(buf).await
|
||
}
|
||
}
|
||
|
||
impl<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> embedded_io_async::Write
|
||
for TcpConnection<'d, N, TX_SZ, RX_SZ>
|
||
{
|
||
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
|
||
self.socket.write(buf).await
|
||
}
|
||
|
||
async fn flush(&mut self) -> Result<(), Self::Error> {
|
||
self.socket.flush().await
|
||
}
|
||
}
|
||
|
||
/// State for TcpClient
|
||
pub struct TcpClientState<const N: usize, const TX_SZ: usize, const RX_SZ: usize> {
|
||
pool: Pool<([u8; TX_SZ], [u8; RX_SZ]), N>,
|
||
}
|
||
|
||
impl<const N: usize, const TX_SZ: usize, const RX_SZ: usize> TcpClientState<N, TX_SZ, RX_SZ> {
|
||
/// Create a new `TcpClientState`.
|
||
pub const fn new() -> Self {
|
||
Self { pool: Pool::new() }
|
||
}
|
||
}
|
||
|
||
struct Pool<T, const N: usize> {
|
||
used: [Cell<bool>; N],
|
||
data: [UnsafeCell<MaybeUninit<T>>; N],
|
||
}
|
||
|
||
impl<T, const N: usize> Pool<T, N> {
|
||
const VALUE: Cell<bool> = Cell::new(false);
|
||
const UNINIT: UnsafeCell<MaybeUninit<T>> = UnsafeCell::new(MaybeUninit::uninit());
|
||
|
||
const fn new() -> Self {
|
||
Self {
|
||
used: [Self::VALUE; N],
|
||
data: [Self::UNINIT; N],
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T, const N: usize> Pool<T, N> {
|
||
fn alloc(&self) -> Option<NonNull<T>> {
|
||
for n in 0..N {
|
||
// this can't race because Pool is not Sync.
|
||
if !self.used[n].get() {
|
||
self.used[n].set(true);
|
||
let p = self.data[n].get() as *mut T;
|
||
return Some(unsafe { NonNull::new_unchecked(p) });
|
||
}
|
||
}
|
||
None
|
||
}
|
||
|
||
/// safety: p must be a pointer obtained from self.alloc that hasn't been freed yet.
|
||
unsafe fn free(&self, p: NonNull<T>) {
|
||
let origin = self.data.as_ptr() as *mut T;
|
||
let n = p.as_ptr().offset_from(origin);
|
||
assert!(n >= 0);
|
||
assert!((n as usize) < N);
|
||
self.used[n as usize].set(false);
|
||
}
|
||
}
|
||
}
|