//! TCP sockets. //! //! # Listening //! //! `embassy-net` does not have a `TcpListener`. Instead, individual `TcpSocket`s can be put into //! listening mode by calling [`TcpSocket::accept`]. //! //! Incoming connections when no socket is listening are rejected. To accept many incoming //! connections, create many sockets and put them all into listening mode. use core::future::{poll_fn, Future}; use core::mem; use core::task::{Context, Poll}; use embassy_time::Duration; use smoltcp::iface::{Interface, SocketHandle}; use smoltcp::socket::tcp; pub use smoltcp::socket::tcp::State; use smoltcp::wire::{IpEndpoint, IpListenEndpoint}; use crate::time::duration_to_smoltcp; use crate::Stack; /// Error returned by TcpSocket read/write functions. #[derive(PartialEq, Eq, Clone, Copy, Debug)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum Error { /// The connection was reset. /// /// This can happen on receiving a RST packet, or on timeout. ConnectionReset, } /// Error returned by [`TcpSocket::connect`]. #[derive(PartialEq, Eq, Clone, Copy, Debug)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum ConnectError { /// The socket is already connected or listening. InvalidState, /// The remote host rejected the connection with a RST packet. ConnectionReset, /// Connect timed out. TimedOut, /// No route to host. NoRoute, } /// Error returned by [`TcpSocket::accept`]. #[derive(PartialEq, Eq, Clone, Copy, Debug)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum AcceptError { /// The socket is already connected or listening. InvalidState, /// Invalid listen port InvalidPort, /// The remote host rejected the connection with a RST packet. ConnectionReset, } /// A TCP socket. pub struct TcpSocket<'a> { io: TcpIo<'a>, } /// The reader half of a TCP socket. pub struct TcpReader<'a> { io: TcpIo<'a>, } /// The writer half of a TCP socket. pub struct TcpWriter<'a> { io: TcpIo<'a>, } impl<'a> TcpReader<'a> { /// Wait until the socket becomes readable. /// /// A socket becomes readable when the receive half of the full-duplex connection is open /// (see [`may_recv()`](TcpSocket::may_recv)), and there is some pending data in the receive buffer. /// /// This is the equivalent of [read](#method.read), without buffering any data. pub fn wait_read_ready(&self) -> impl Future + '_ { poll_fn(move |cx| self.io.poll_read_ready(cx)) } /// Read data from the socket. /// /// Returns how many bytes were read, or an error. If no data is available, it waits /// until there is at least one byte available. /// /// # Note /// A return value of Ok(0) means that we have read all data and the remote /// side has closed our receive half of the socket. The remote can no longer /// send bytes. /// /// The send half of the socket is still open. If you want to reconnect using /// the socket you split this reader off the send half needs to be closed using /// [`abort()`](TcpSocket::abort). pub async fn read(&mut self, buf: &mut [u8]) -> Result { self.io.read(buf).await } /// Call `f` with the largest contiguous slice of octets in the receive buffer, /// and dequeue the amount of elements returned by `f`. /// /// If no data is available, it waits until there is at least one byte available. pub async fn read_with(&mut self, f: F) -> Result where F: FnOnce(&mut [u8]) -> (usize, R), { self.io.read_with(f).await } /// Return the maximum number of bytes inside the transmit buffer. pub fn recv_capacity(&self) -> usize { self.io.recv_capacity() } /// Return the amount of octets queued in the receive buffer. This value can be larger than /// the slice read by the next `recv` or `peek` call because it includes all queued octets, /// and not only the octets that may be returned as a contiguous slice. pub fn recv_queue(&self) -> usize { self.io.recv_queue() } } impl<'a> TcpWriter<'a> { /// Wait until the socket becomes writable. /// /// A socket becomes writable when the transmit half of the full-duplex connection is open /// (see [`may_send()`](TcpSocket::may_send)), and the transmit buffer is not full. /// /// This is the equivalent of [write](#method.write), without sending any data. pub fn wait_write_ready(&self) -> impl Future + '_ { poll_fn(move |cx| self.io.poll_write_ready(cx)) } /// Write data to the socket. /// /// Returns how many bytes were written, or an error. If the socket is not ready to /// accept data, it waits until it is. pub fn write<'s>(&'s mut self, buf: &'s [u8]) -> impl Future> + 's { self.io.write(buf) } /// Flushes the written data to the socket. /// /// This waits until all data has been sent, and ACKed by the remote host. For a connection /// closed with [`abort()`](TcpSocket::abort) it will wait for the TCP RST packet to be sent. pub fn flush(&mut self) -> impl Future> + '_ { self.io.flush() } /// Call `f` with the largest contiguous slice of octets in the transmit buffer, /// and enqueue the amount of elements returned by `f`. /// /// If the socket is not ready to accept data, it waits until it is. pub async fn write_with(&mut self, f: F) -> Result where F: FnOnce(&mut [u8]) -> (usize, R), { self.io.write_with(f).await } /// Return the maximum number of bytes inside the transmit buffer. pub fn send_capacity(&self) -> usize { self.io.send_capacity() } /// Return the amount of octets queued in the transmit buffer. pub fn send_queue(&self) -> usize { self.io.send_queue() } } impl<'a> TcpSocket<'a> { /// Create a new TCP socket on the given stack, with the given buffers. pub fn new(stack: Stack<'a>, rx_buffer: &'a mut [u8], tx_buffer: &'a mut [u8]) -> Self { let handle = stack.with_mut(|i| { let rx_buffer: &'static mut [u8] = unsafe { mem::transmute(rx_buffer) }; let tx_buffer: &'static mut [u8] = unsafe { mem::transmute(tx_buffer) }; i.sockets.add(tcp::Socket::new( tcp::SocketBuffer::new(rx_buffer), tcp::SocketBuffer::new(tx_buffer), )) }); Self { io: TcpIo { stack, handle }, } } /// Return the maximum number of bytes inside the recv buffer. pub fn recv_capacity(&self) -> usize { self.io.recv_capacity() } /// Return the maximum number of bytes inside the transmit buffer. pub fn send_capacity(&self) -> usize { self.io.send_capacity() } /// Return the amount of octets queued in the transmit buffer. pub fn send_queue(&self) -> usize { self.io.send_queue() } /// Return the amount of octets queued in the receive buffer. This value can be larger than /// the slice read by the next `recv` or `peek` call because it includes all queued octets, /// and not only the octets that may be returned as a contiguous slice. pub fn recv_queue(&self) -> usize { self.io.recv_queue() } /// Call `f` with the largest contiguous slice of octets in the transmit buffer, /// and enqueue the amount of elements returned by `f`. /// /// If the socket is not ready to accept data, it waits until it is. pub async fn write_with(&mut self, f: F) -> Result where F: FnOnce(&mut [u8]) -> (usize, R), { self.io.write_with(f).await } /// Call `f` with the largest contiguous slice of octets in the receive buffer, /// and dequeue the amount of elements returned by `f`. /// /// If no data is available, it waits until there is at least one byte available. pub async fn read_with(&mut self, f: F) -> Result where F: FnOnce(&mut [u8]) -> (usize, R), { self.io.read_with(f).await } /// Split the socket into reader and a writer halves. pub fn split(&mut self) -> (TcpReader<'_>, TcpWriter<'_>) { (TcpReader { io: self.io }, TcpWriter { io: self.io }) } /// Connect to a remote host. pub async fn connect(&mut self, remote_endpoint: T) -> Result<(), ConnectError> where T: Into, { let local_port = self.io.stack.with_mut(|i| i.get_local_port()); match { self.io .with_mut(|s, i| s.connect(i.context(), remote_endpoint, local_port)) } { Ok(()) => {} Err(tcp::ConnectError::InvalidState) => return Err(ConnectError::InvalidState), Err(tcp::ConnectError::Unaddressable) => return Err(ConnectError::NoRoute), } poll_fn(|cx| { self.io.with_mut(|s, _| match s.state() { tcp::State::Closed | tcp::State::TimeWait => Poll::Ready(Err(ConnectError::ConnectionReset)), tcp::State::Listen => unreachable!(), tcp::State::SynSent | tcp::State::SynReceived => { s.register_send_waker(cx.waker()); Poll::Pending } _ => Poll::Ready(Ok(())), }) }) .await } /// Accept a connection from a remote host. /// /// This function puts the socket in listening mode, and waits until a connection is received. pub async fn accept(&mut self, local_endpoint: T) -> Result<(), AcceptError> where T: Into, { match self.io.with_mut(|s, _| s.listen(local_endpoint)) { Ok(()) => {} Err(tcp::ListenError::InvalidState) => return Err(AcceptError::InvalidState), Err(tcp::ListenError::Unaddressable) => return Err(AcceptError::InvalidPort), } poll_fn(|cx| { self.io.with_mut(|s, _| match s.state() { tcp::State::Listen | tcp::State::SynSent | tcp::State::SynReceived => { s.register_send_waker(cx.waker()); Poll::Pending } _ => Poll::Ready(Ok(())), }) }) .await } /// Wait until the socket becomes readable. /// /// A socket becomes readable when the receive half of the full-duplex connection is open /// (see [may_recv](#method.may_recv)), and there is some pending data in the receive buffer. /// /// This is the equivalent of [read](#method.read), without buffering any data. pub fn wait_read_ready(&self) -> impl Future + '_ { poll_fn(move |cx| self.io.poll_read_ready(cx)) } /// Read data from the socket. /// /// Returns how many bytes were read, or an error. If no data is available, it waits /// until there is at least one byte available. /// /// A return value of Ok(0) means that the socket was closed and is longer /// able to receive any data. pub fn read<'s>(&'s mut self, buf: &'s mut [u8]) -> impl Future> + 's { self.io.read(buf) } /// Wait until the socket becomes writable. /// /// A socket becomes writable when the transmit half of the full-duplex connection is open /// (see [may_send](#method.may_send)), and the transmit buffer is not full. /// /// This is the equivalent of [write](#method.write), without sending any data. pub fn wait_write_ready(&self) -> impl Future + '_ { poll_fn(move |cx| self.io.poll_write_ready(cx)) } /// Write data to the socket. /// /// Returns how many bytes were written, or an error. If the socket is not ready to /// accept data, it waits until it is. pub fn write<'s>(&'s mut self, buf: &'s [u8]) -> impl Future> + 's { self.io.write(buf) } /// Flushes the written data to the socket. /// /// This waits until all data has been sent, and ACKed by the remote host. For a connection /// closed with [`abort()`](TcpSocket::abort) it will wait for the TCP RST packet to be sent. pub fn flush(&mut self) -> impl Future> + '_ { self.io.flush() } /// Set the timeout for the socket. /// /// If the timeout is set, the socket will be closed if no data is received for the /// specified duration. /// /// # Note: /// Set a keep alive interval ([`set_keep_alive`] to prevent timeouts when /// the remote could still respond. pub fn set_timeout(&mut self, duration: Option) { self.io .with_mut(|s, _| s.set_timeout(duration.map(duration_to_smoltcp))) } /// Set the keep-alive interval for the socket. /// /// If the keep-alive interval is set, the socket will send keep-alive packets after /// the specified duration of inactivity. /// /// If not set, the socket will not send keep-alive packets. /// /// By setting a [`timeout`](Self::timeout) larger then the keep alive you /// can detect a remote endpoint that no longer answers. pub fn set_keep_alive(&mut self, interval: Option) { self.io .with_mut(|s, _| s.set_keep_alive(interval.map(duration_to_smoltcp))) } /// Set the hop limit field in the IP header of sent packets. pub fn set_hop_limit(&mut self, hop_limit: Option) { self.io.with_mut(|s, _| s.set_hop_limit(hop_limit)) } /// Get the local endpoint of the socket. /// /// Returns `None` if the socket is not bound (listening) or not connected. pub fn local_endpoint(&self) -> Option { self.io.with(|s, _| s.local_endpoint()) } /// Get the remote endpoint of the socket. /// /// Returns `None` if the socket is not connected. pub fn remote_endpoint(&self) -> Option { self.io.with(|s, _| s.remote_endpoint()) } /// Get the state of the socket. pub fn state(&self) -> State { self.io.with(|s, _| s.state()) } /// Close the write half of the socket. /// /// This closes only the write half of the socket. The read half side remains open, the /// socket can still receive data. /// /// Data that has been written to the socket and not yet sent (or not yet ACKed) will still /// still sent. The last segment of the pending to send data is sent with the FIN flag set. pub fn close(&mut self) { self.io.with_mut(|s, _| s.close()) } /// Forcibly close the socket. /// /// This instantly closes both the read and write halves of the socket. Any pending data /// that has not been sent will be lost. /// /// Note that the TCP RST packet is not sent immediately - if the `TcpSocket` is dropped too soon /// the remote host may not know the connection has been closed. /// `abort()` callers should wait for a [`flush()`](TcpSocket::flush) call to complete before /// dropping or reusing the socket. pub fn abort(&mut self) { self.io.with_mut(|s, _| s.abort()) } /// Return whether the transmit half of the full-duplex connection is open. /// /// This function returns true if it's possible to send data and have it arrive /// to the remote endpoint. However, it does not make any guarantees about the state /// of the transmit buffer, and even if it returns true, [write](#method.write) may /// not be able to enqueue any octets. /// /// In terms of the TCP state machine, the socket must be in the `ESTABLISHED` or /// `CLOSE-WAIT` state. pub fn may_send(&self) -> bool { self.io.with(|s, _| s.may_send()) } /// Check whether the transmit half of the full-duplex connection is open /// (see [may_send](#method.may_send)), and the transmit buffer is not full. pub fn can_send(&self) -> bool { self.io.with(|s, _| s.can_send()) } /// return whether the receive half of the full-duplex connection is open. /// This function returns true if it’s possible to receive data from the remote endpoint. /// It will return true while there is data in the receive buffer, and if there isn’t, /// as long as the remote endpoint has not closed the connection. pub fn may_recv(&self) -> bool { self.io.with(|s, _| s.may_recv()) } /// Get whether the socket is ready to receive data, i.e. whether there is some pending data in the receive buffer. pub fn can_recv(&self) -> bool { self.io.with(|s, _| s.can_recv()) } } impl<'a> Drop for TcpSocket<'a> { fn drop(&mut self) { self.io.stack.with_mut(|i| i.sockets.remove(self.io.handle)); } } fn _assert_covariant<'a, 'b: 'a>(x: TcpSocket<'b>) -> TcpSocket<'a> { x } fn _assert_covariant_reader<'a, 'b: 'a>(x: TcpReader<'b>) -> TcpReader<'a> { x } fn _assert_covariant_writer<'a, 'b: 'a>(x: TcpWriter<'b>) -> TcpWriter<'a> { x } // ======================= #[derive(Copy, Clone)] struct TcpIo<'a> { stack: Stack<'a>, handle: SocketHandle, } impl<'d> TcpIo<'d> { fn with(&self, f: impl FnOnce(&tcp::Socket, &Interface) -> R) -> R { self.stack.with(|i| { let socket = i.sockets.get::(self.handle); f(socket, &i.iface) }) } fn with_mut(&self, f: impl FnOnce(&mut tcp::Socket, &mut Interface) -> R) -> R { self.stack.with_mut(|i| { let socket = i.sockets.get_mut::(self.handle); let res = f(socket, &mut i.iface); i.waker.wake(); res }) } fn poll_read_ready(&self, cx: &mut Context<'_>) -> Poll<()> { self.with_mut(|s, _| { if s.can_recv() { Poll::Ready(()) } else { s.register_recv_waker(cx.waker()); Poll::Pending } }) } fn read<'s>(&'s mut self, buf: &'s mut [u8]) -> impl Future> + 's { poll_fn(|cx| { // CAUTION: smoltcp semantics around EOF are different to what you'd expect // from posix-like IO, so we have to tweak things here. self.with_mut(|s, _| match s.recv_slice(buf) { // Reading into empty buffer Ok(0) if buf.is_empty() => { // embedded_io_async::Read's contract is to not block if buf is empty. While // this function is not a direct implementor of the trait method, we still don't // want our future to never resolve. Poll::Ready(Ok(0)) } // No data ready Ok(0) => { s.register_recv_waker(cx.waker()); Poll::Pending } // Data ready! Ok(n) => Poll::Ready(Ok(n)), // EOF Err(tcp::RecvError::Finished) => Poll::Ready(Ok(0)), // Connection reset. TODO: this can also be timeouts etc, investigate. Err(tcp::RecvError::InvalidState) => Poll::Ready(Err(Error::ConnectionReset)), }) }) } fn poll_write_ready(&self, cx: &mut Context<'_>) -> Poll<()> { self.with_mut(|s, _| { if s.can_send() { Poll::Ready(()) } else { s.register_send_waker(cx.waker()); Poll::Pending } }) } fn write<'s>(&'s mut self, buf: &'s [u8]) -> impl Future> + 's { poll_fn(|cx| { self.with_mut(|s, _| match s.send_slice(buf) { // Not ready to send (no space in the tx buffer) Ok(0) => { s.register_send_waker(cx.waker()); Poll::Pending } // Some data sent Ok(n) => Poll::Ready(Ok(n)), // Connection reset. TODO: this can also be timeouts etc, investigate. Err(tcp::SendError::InvalidState) => Poll::Ready(Err(Error::ConnectionReset)), }) }) } async fn write_with(&mut self, f: F) -> Result where F: FnOnce(&mut [u8]) -> (usize, R), { let mut f = Some(f); poll_fn(move |cx| { self.with_mut(|s, _| { if !s.can_send() { if s.may_send() { // socket buffer is full wait until it has atleast one byte free s.register_send_waker(cx.waker()); Poll::Pending } else { // if we can't transmit because the transmit half of the duplex connection is closed then return an error Poll::Ready(Err(Error::ConnectionReset)) } } else { Poll::Ready(match s.send(unwrap!(f.take())) { // Connection reset. TODO: this can also be timeouts etc, investigate. Err(tcp::SendError::InvalidState) => Err(Error::ConnectionReset), Ok(r) => Ok(r), }) } }) }) .await } async fn read_with(&mut self, f: F) -> Result where F: FnOnce(&mut [u8]) -> (usize, R), { let mut f = Some(f); poll_fn(move |cx| { self.with_mut(|s, _| { if !s.can_recv() { if s.may_recv() { // socket buffer is empty wait until it has atleast one byte has arrived s.register_recv_waker(cx.waker()); Poll::Pending } else { // if we can't receive because the receive half of the duplex connection is closed then return an error Poll::Ready(Err(Error::ConnectionReset)) } } else { Poll::Ready(match s.recv(unwrap!(f.take())) { // Connection reset. TODO: this can also be timeouts etc, investigate. Err(tcp::RecvError::Finished) | Err(tcp::RecvError::InvalidState) => { Err(Error::ConnectionReset) } Ok(r) => Ok(r), }) } }) }) .await } fn flush(&mut self) -> impl Future> + '_ { poll_fn(|cx| { self.with_mut(|s, _| { let data_pending = (s.send_queue() > 0) && s.state() != tcp::State::Closed; let fin_pending = matches!( s.state(), tcp::State::FinWait1 | tcp::State::Closing | tcp::State::LastAck ); let rst_pending = s.state() == tcp::State::Closed && s.remote_endpoint().is_some(); // If there are outstanding send operations, register for wake up and wait // smoltcp issues wake-ups when octets are dequeued from the send buffer if data_pending || fin_pending || rst_pending { s.register_send_waker(cx.waker()); Poll::Pending // No outstanding sends, socket is flushed } else { Poll::Ready(Ok(())) } }) }) } fn recv_capacity(&self) -> usize { self.with(|s, _| s.recv_capacity()) } fn send_capacity(&self) -> usize { self.with(|s, _| s.send_capacity()) } fn send_queue(&self) -> usize { self.with(|s, _| s.send_queue()) } fn recv_queue(&self) -> usize { self.with(|s, _| s.recv_queue()) } } mod embedded_io_impls { use super::*; impl embedded_io_async::Error for ConnectError { fn kind(&self) -> embedded_io_async::ErrorKind { match self { ConnectError::ConnectionReset => embedded_io_async::ErrorKind::ConnectionReset, ConnectError::TimedOut => embedded_io_async::ErrorKind::TimedOut, ConnectError::NoRoute => embedded_io_async::ErrorKind::NotConnected, ConnectError::InvalidState => embedded_io_async::ErrorKind::Other, } } } impl embedded_io_async::Error for Error { fn kind(&self) -> embedded_io_async::ErrorKind { match self { Error::ConnectionReset => embedded_io_async::ErrorKind::ConnectionReset, } } } impl<'d> embedded_io_async::ErrorType for TcpSocket<'d> { type Error = Error; } impl<'d> embedded_io_async::Read for TcpSocket<'d> { async fn read(&mut self, buf: &mut [u8]) -> Result { self.io.read(buf).await } } impl<'d> embedded_io_async::ReadReady for TcpSocket<'d> { fn read_ready(&mut self) -> Result { Ok(self.io.with(|s, _| s.can_recv() || !s.may_recv())) } } impl<'d> embedded_io_async::Write for TcpSocket<'d> { async fn write(&mut self, buf: &[u8]) -> Result { self.io.write(buf).await } async fn flush(&mut self) -> Result<(), Self::Error> { self.io.flush().await } } impl<'d> embedded_io_async::WriteReady for TcpSocket<'d> { fn write_ready(&mut self) -> Result { Ok(self.io.with(|s, _| s.can_send())) } } impl<'d> embedded_io_async::ErrorType for TcpReader<'d> { type Error = Error; } impl<'d> embedded_io_async::Read for TcpReader<'d> { async fn read(&mut self, buf: &mut [u8]) -> Result { self.io.read(buf).await } } impl<'d> embedded_io_async::ReadReady for TcpReader<'d> { fn read_ready(&mut self) -> Result { Ok(self.io.with(|s, _| s.can_recv() || !s.may_recv())) } } impl<'d> embedded_io_async::ErrorType for TcpWriter<'d> { type Error = Error; } impl<'d> embedded_io_async::Write for TcpWriter<'d> { async fn write(&mut self, buf: &[u8]) -> Result { self.io.write(buf).await } async fn flush(&mut self) -> Result<(), Self::Error> { self.io.flush().await } } impl<'d> embedded_io_async::WriteReady for TcpWriter<'d> { fn write_ready(&mut self) -> Result { Ok(self.io.with(|s, _| s.can_send())) } } } /// TCP client compatible with `embedded-nal-async` traits. pub mod client { use core::cell::{Cell, UnsafeCell}; use core::mem::MaybeUninit; use core::net::IpAddr; use core::ptr::NonNull; use super::*; /// TCP client connection pool compatible with `embedded-nal-async` traits. /// /// The pool is capable of managing up to N concurrent connections with tx and rx buffers according to TX_SZ and RX_SZ. pub struct TcpClient<'d, const N: usize, const TX_SZ: usize = 1024, const RX_SZ: usize = 1024> { stack: Stack<'d>, state: &'d TcpClientState, socket_timeout: Option, } impl<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> TcpClient<'d, N, TX_SZ, RX_SZ> { /// Create a new `TcpClient`. pub fn new(stack: Stack<'d>, state: &'d TcpClientState) -> Self { Self { stack, state, socket_timeout: None, } } /// Set the timeout for each socket created by this `TcpClient`. /// /// If the timeout is set, the socket will be closed if no data is received for the /// specified duration. pub fn set_timeout(&mut self, timeout: Option) { self.socket_timeout = timeout; } } impl<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> embedded_nal_async::TcpConnect for TcpClient<'d, N, TX_SZ, RX_SZ> { type Error = Error; type Connection<'m> = TcpConnection<'m, N, TX_SZ, RX_SZ> where Self: 'm; async fn connect<'a>(&'a self, remote: core::net::SocketAddr) -> Result, Self::Error> { let addr: crate::IpAddress = match remote.ip() { #[cfg(feature = "proto-ipv4")] IpAddr::V4(addr) => crate::IpAddress::Ipv4(addr), #[cfg(not(feature = "proto-ipv4"))] IpAddr::V4(_) => panic!("ipv4 support not enabled"), #[cfg(feature = "proto-ipv6")] IpAddr::V6(addr) => crate::IpAddress::Ipv6(addr), #[cfg(not(feature = "proto-ipv6"))] IpAddr::V6(_) => panic!("ipv6 support not enabled"), }; let remote_endpoint = (addr, remote.port()); let mut socket = TcpConnection::new(self.stack, self.state)?; socket.socket.set_timeout(self.socket_timeout); socket .socket .connect(remote_endpoint) .await .map_err(|_| Error::ConnectionReset)?; Ok(socket) } } /// Opened TCP connection in a [`TcpClient`]. pub struct TcpConnection<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> { socket: TcpSocket<'d>, state: &'d TcpClientState, bufs: NonNull<([u8; TX_SZ], [u8; RX_SZ])>, } impl<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> TcpConnection<'d, N, TX_SZ, RX_SZ> { fn new(stack: Stack<'d>, state: &'d TcpClientState) -> Result { let mut bufs = state.pool.alloc().ok_or(Error::ConnectionReset)?; Ok(Self { socket: unsafe { TcpSocket::new(stack, &mut bufs.as_mut().1, &mut bufs.as_mut().0) }, state, bufs, }) } } impl<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> Drop for TcpConnection<'d, N, TX_SZ, RX_SZ> { fn drop(&mut self) { unsafe { self.socket.close(); self.state.pool.free(self.bufs); } } } impl<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> embedded_io_async::ErrorType for TcpConnection<'d, N, TX_SZ, RX_SZ> { type Error = Error; } impl<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> embedded_io_async::Read for TcpConnection<'d, N, TX_SZ, RX_SZ> { async fn read(&mut self, buf: &mut [u8]) -> Result { self.socket.read(buf).await } } impl<'d, const N: usize, const TX_SZ: usize, const RX_SZ: usize> embedded_io_async::Write for TcpConnection<'d, N, TX_SZ, RX_SZ> { async fn write(&mut self, buf: &[u8]) -> Result { self.socket.write(buf).await } async fn flush(&mut self) -> Result<(), Self::Error> { self.socket.flush().await } } /// State for TcpClient pub struct TcpClientState { pool: Pool<([u8; TX_SZ], [u8; RX_SZ]), N>, } impl TcpClientState { /// Create a new `TcpClientState`. pub const fn new() -> Self { Self { pool: Pool::new() } } } struct Pool { used: [Cell; N], data: [UnsafeCell>; N], } impl Pool { const VALUE: Cell = Cell::new(false); const UNINIT: UnsafeCell> = UnsafeCell::new(MaybeUninit::uninit()); const fn new() -> Self { Self { used: [Self::VALUE; N], data: [Self::UNINIT; N], } } } impl Pool { fn alloc(&self) -> Option> { for n in 0..N { // this can't race because Pool is not Sync. if !self.used[n].get() { self.used[n].set(true); let p = self.data[n].get() as *mut T; return Some(unsafe { NonNull::new_unchecked(p) }); } } None } /// safety: p must be a pointer obtained from self.alloc that hasn't been freed yet. unsafe fn free(&self, p: NonNull) { let origin = self.data.as_ptr() as *mut T; let n = p.as_ptr().offset_from(origin); assert!(n >= 0); assert!((n as usize) < N); self.used[n as usize].set(false); } } }