160 lines
6.5 KiB
C
160 lines
6.5 KiB
C
/**
|
|
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
// PIO logic analyser example
|
|
//
|
|
// This program captures samples from a group of pins, at a fixed rate, once a
|
|
// trigger condition is detected (level condition on one pin). The samples are
|
|
// transferred to a capture buffer using the system DMA.
|
|
//
|
|
// 1 to 32 pins can be captured, at a sample rate no greater than system clock
|
|
// frequency.
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "pico/stdlib.h"
|
|
#include "hardware/pio.h"
|
|
#include "hardware/dma.h"
|
|
#include "hardware/structs/bus_ctrl.h"
|
|
|
|
// Some logic to analyse:
|
|
#include "hardware/structs/pwm.h"
|
|
|
|
const uint CAPTURE_PIN_BASE = 16;
|
|
const uint CAPTURE_PIN_COUNT = 2;
|
|
const uint CAPTURE_N_SAMPLES = 96;
|
|
|
|
static inline uint bits_packed_per_word(uint pin_count) {
|
|
// If the number of pins to be sampled divides the shift register size, we
|
|
// can use the full SR and FIFO width, and push when the input shift count
|
|
// exactly reaches 32. If not, we have to push earlier, so we use the FIFO
|
|
// a little less efficiently.
|
|
const uint SHIFT_REG_WIDTH = 32;
|
|
return SHIFT_REG_WIDTH - (SHIFT_REG_WIDTH % pin_count);
|
|
}
|
|
|
|
void logic_analyser_init(PIO pio, uint sm, uint pin_base, uint pin_count, float div) {
|
|
// Load a program to capture n pins. This is just a single `in pins, n`
|
|
// instruction with a wrap.
|
|
uint16_t capture_prog_instr = pio_encode_in(pio_pins, pin_count);
|
|
struct pio_program capture_prog = {
|
|
.instructions = &capture_prog_instr,
|
|
.length = 1,
|
|
.origin = -1
|
|
};
|
|
uint offset = pio_add_program(pio, &capture_prog);
|
|
|
|
// Configure state machine to loop over this `in` instruction forever,
|
|
// with autopush enabled.
|
|
pio_sm_config c = pio_get_default_sm_config();
|
|
sm_config_set_in_pins(&c, pin_base);
|
|
sm_config_set_wrap(&c, offset, offset);
|
|
sm_config_set_clkdiv(&c, div);
|
|
// Note that we may push at a < 32 bit threshold if pin_count does not
|
|
// divide 32. We are using shift-to-right, so the sample data ends up
|
|
// left-justified in the FIFO in this case, with some zeroes at the LSBs.
|
|
sm_config_set_in_shift(&c, true, true, bits_packed_per_word(pin_count));
|
|
sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_RX);
|
|
pio_sm_init(pio, sm, offset, &c);
|
|
}
|
|
|
|
void logic_analyser_arm(PIO pio, uint sm, uint dma_chan, uint32_t *capture_buf, size_t capture_size_words,
|
|
uint trigger_pin, bool trigger_level) {
|
|
pio_sm_set_enabled(pio, sm, false);
|
|
// Need to clear _input shift counter_, as well as FIFO, because there may be
|
|
// partial ISR contents left over from a prevoius run. sm_restart does this.
|
|
pio_sm_clear_fifos(pio, sm);
|
|
pio_sm_restart(pio, sm);
|
|
|
|
dma_channel_config c = dma_channel_get_default_config(dma_chan);
|
|
channel_config_set_read_increment(&c, false);
|
|
channel_config_set_write_increment(&c, true);
|
|
channel_config_set_dreq(&c, pio_get_dreq(pio, sm, false));
|
|
|
|
dma_channel_configure(dma_chan, &c,
|
|
capture_buf, // Destination pointer
|
|
&pio->rxf[sm], // Source pointer
|
|
capture_size_words, // Number of transfers
|
|
true // Start immediately
|
|
);
|
|
|
|
pio_sm_exec(pio, sm, pio_encode_wait_gpio(trigger_level, trigger_pin));
|
|
pio_sm_set_enabled(pio, sm, true);
|
|
}
|
|
|
|
void print_capture_buf(const uint32_t *buf, uint pin_base, uint pin_count, uint32_t n_samples) {
|
|
// Display the capture buffer in text form, like this:
|
|
// 00: __--__--__--__--__--__--
|
|
// 01: ____----____----____----
|
|
printf("Capture:\n");
|
|
// Each FIFO record may be only partially filled with bits, depending on
|
|
// whether pin_count is a factor of 32.
|
|
uint record_size_bits = bits_packed_per_word(pin_count);
|
|
for (int pin = 0; pin < pin_count; ++pin) {
|
|
printf("%02d: ", pin + pin_base);
|
|
for (int sample = 0; sample < n_samples; ++sample) {
|
|
uint bit_index = pin + sample * pin_count;
|
|
uint word_index = bit_index / record_size_bits;
|
|
// Data is left-justified in each FIFO entry, hence the (32 - record_size_bits) offset
|
|
uint word_mask = 1u << (bit_index % record_size_bits + 32 - record_size_bits);
|
|
printf(buf[word_index] & word_mask ? "-" : "_");
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
int main() {
|
|
stdio_init_all();
|
|
printf("PIO logic analyser example\n");
|
|
|
|
// We're going to capture into a u32 buffer, for best DMA efficiency. Need
|
|
// to be careful of rounding in case the number of pins being sampled
|
|
// isn't a power of 2.
|
|
uint total_sample_bits = CAPTURE_N_SAMPLES * CAPTURE_PIN_COUNT;
|
|
total_sample_bits += bits_packed_per_word(CAPTURE_PIN_COUNT) - 1;
|
|
uint buf_size_words = total_sample_bits / bits_packed_per_word(CAPTURE_PIN_COUNT);
|
|
uint32_t *capture_buf = malloc(buf_size_words * sizeof(uint32_t));
|
|
hard_assert(capture_buf);
|
|
|
|
// Grant high bus priority to the DMA, so it can shove the processors out
|
|
// of the way. This should only be needed if you are pushing things up to
|
|
// >16bits/clk here, i.e. if you need to saturate the bus completely.
|
|
bus_ctrl_hw->priority = BUSCTRL_BUS_PRIORITY_DMA_W_BITS | BUSCTRL_BUS_PRIORITY_DMA_R_BITS;
|
|
|
|
PIO pio = pio0;
|
|
uint sm = 0;
|
|
uint dma_chan = 0;
|
|
|
|
logic_analyser_init(pio, sm, CAPTURE_PIN_BASE, CAPTURE_PIN_COUNT, 1.f);
|
|
|
|
printf("Arming trigger\n");
|
|
logic_analyser_arm(pio, sm, dma_chan, capture_buf, buf_size_words, CAPTURE_PIN_BASE, true);
|
|
|
|
printf("Starting PWM example\n");
|
|
// PWM example: -----------------------------------------------------------
|
|
gpio_set_function(CAPTURE_PIN_BASE, GPIO_FUNC_PWM);
|
|
gpio_set_function(CAPTURE_PIN_BASE + 1, GPIO_FUNC_PWM);
|
|
// Topmost value of 3: count from 0 to 3 and then wrap, so period is 4 cycles
|
|
pwm_hw->slice[0].top = 3;
|
|
// Divide frequency by two to slow things down a little
|
|
pwm_hw->slice[0].div = 4 << PWM_CH0_DIV_INT_LSB;
|
|
// Set channel A to be high for 1 cycle each period (duty cycle 1/4) and
|
|
// channel B for 3 cycles (duty cycle 3/4)
|
|
pwm_hw->slice[0].cc =
|
|
(1 << PWM_CH0_CC_A_LSB) |
|
|
(3 << PWM_CH0_CC_B_LSB);
|
|
// Enable this PWM slice
|
|
pwm_hw->slice[0].csr = PWM_CH0_CSR_EN_BITS;
|
|
// ------------------------------------------------------------------------
|
|
|
|
// The logic analyser should have started capturing as soon as it saw the
|
|
// first transition. Wait until the last sample comes in from the DMA.
|
|
dma_channel_wait_for_finish_blocking(dma_chan);
|
|
|
|
print_capture_buf(capture_buf, CAPTURE_PIN_BASE, CAPTURE_PIN_COUNT, CAPTURE_N_SAMPLES);
|
|
}
|