This repository has been archived on 2025-01-25. You can view files and clone it, but cannot push or open issues or pull requests.
Graham Sanderson 6e647c6f26
Additional examples for specific h/w by our interns (#171)
adc/microphone_adc - Read analog values from a microphone and plot the measured sound amplitude.
i2c/bmp280_i2c - Read and convert temperature and pressure data from a BMP280 sensor, attached to an I2C bus.
i2c/lis3dh_i2c - Read acceleration and temperature value from a LIS3DH sensor via I2C
i2c/mcp9808_i2c - Read temperature, set limits and raise alerts when limits are surpassed.
i2c/mma8451_i2c - Read acceleration from a MMA8451 accelerometer and set range and precision for the data.
i2c/mpl3115a2_i2c - Interface with an MPL3115A2 altimeter, exploring interrupts and advanced board features, via I2C.
i2c/oled_i2c - Convert and display a bitmap on a 128x32 SSD1306-driven OLED display
i2c/pa1010d_i2c - Read GPS location data, parse and display data via I2C.
i2c/pcf8523_i2c - Read time and date values from a real time clock. Set current time and alarms on it.
uart/lcd_uart - Display text and symbols on a 16x02 RGB LCD display via UART
2021-10-25 12:30:57 -05:00
..

= Attaching a BMP280 temp/pressure sensor via I2C

This example code shows how to interface the Raspberry Pi Pico with the popular BMP280 temperature and air pressure sensor manufactured by Bosch. A similar variant, the BME280, exists that can also measure humidity. There is another example that uses the BME280 device but talks to it via SPI as opposed to I2C.

The code reads data from the sensor's registers every 500 milliseconds and prints it via the onboard UART. This example operates the BMP280 in _normal_ mode, meaning that the device continuously cycles between a measurement period and a standby period at a regular interval we can set. This has the advantage that subsequent reads do not require configuration register writes and is the recommended mode of operation to filter out short-term disturbances.

[TIP]
======
The BMP280 is highly configurable with 3 modes of operation, various oversampling levels, and 5 filter settings. Find the datasheet online (https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf) to explore all of its capabilities beyond the simple example given here.
======

== Wiring information

Wiring up the device requires 4 jumpers, to connect VCC (3.3v), GND, SDA and SCL. The example here uses the default I2C port 0, which is assigned to GPIO 4 (SDA) and 5 (SCL) in software. Power is supplied from the 3.3V pin from the Pico.

WARNING: The BMP280 has a maximum supply voltage rating of 3.6V. Most breakout boards have voltage regulators that will allow a range of input voltages of 2-6V, but make sure to check beforehand.

[[bmp280_i2c_wiring]]
[pdfwidth=75%]
.Wiring Diagram for BMP280 sensor via I2C.
image::bmp280_i2c_bb.png[]

== List of Files

CMakeLists.txt:: CMake file to incorporate the example into the examples build tree.
bmp280_i2c.c:: The example code.

== Bill of Materials

.A list of materials required for the example
[[bmp280_i2c-bom-table]]
[cols=3]
|===
| *Item* | *Quantity* | Details
| Breadboard | 1 | generic part
| Raspberry Pi Pico | 1 | https://www.raspberrypi.com/products/raspberry-pi-pico/
| BMP280-based breakout board | 1 | https://shop.pimoroni.com/products/bmp280-breakout-temperature-pressure-altitude-sensor[from Pimoroni]
| M/M Jumper wires | 4 | generic part
|===