/** * Copyright (c) 2020 Raspberry Pi (Trading) Ltd. * * SPDX-License-Identifier: BSD-3-Clause */ #include // Pico #include "pico/stdlib.h" // For memcpy #include // Include descriptor struct definitions #include "usb_common.h" // USB register definitions from pico-sdk #include "hardware/regs/usb.h" // USB hardware struct definitions from pico-sdk #include "hardware/structs/usb.h" // For interrupt enable and numbers #include "hardware/irq.h" // For resetting the USB controller #include "hardware/resets.h" // Device descriptors #include "dev_lowlevel.h" #define usb_hw_set hw_set_alias(usb_hw) #define usb_hw_clear hw_clear_alias(usb_hw) // Function prototypes for our device specific endpoint handlers defined // later on void ep0_in_handler(uint8_t *buf, uint16_t len); void ep0_out_handler(uint8_t *buf, uint16_t len); void ep1_out_handler(uint8_t *buf, uint16_t len); void ep2_in_handler(uint8_t *buf, uint16_t len); // Global device address static bool should_set_address = false; static uint8_t dev_addr = 0; static volatile bool configured = false; // Global data buffer for EP0 static uint8_t ep0_buf[64]; // Struct defining the device configuration static struct usb_device_configuration dev_config = { .device_descriptor = &device_descriptor, .interface_descriptor = &interface_descriptor, .config_descriptor = &config_descriptor, .lang_descriptor = lang_descriptor, .descriptor_strings = descriptor_strings, .endpoints = { { .descriptor = &ep0_out, .handler = &ep0_out_handler, .endpoint_control = NULL, // NA for EP0 .buffer_control = &usb_dpram->ep_buf_ctrl[0].out, // EP0 in and out share a data buffer .data_buffer = &usb_dpram->ep0_buf_a[0], }, { .descriptor = &ep0_in, .handler = &ep0_in_handler, .endpoint_control = NULL, // NA for EP0, .buffer_control = &usb_dpram->ep_buf_ctrl[0].in, // EP0 in and out share a data buffer .data_buffer = &usb_dpram->ep0_buf_a[0], }, { .descriptor = &ep1_out, .handler = &ep1_out_handler, // EP1 starts at offset 0 for endpoint control .endpoint_control = &usb_dpram->ep_ctrl[0].out, .buffer_control = &usb_dpram->ep_buf_ctrl[1].out, // First free EPX buffer .data_buffer = &usb_dpram->epx_data[0 * 64], }, { .descriptor = &ep2_in, .handler = &ep2_in_handler, .endpoint_control = &usb_dpram->ep_ctrl[1].in, .buffer_control = &usb_dpram->ep_buf_ctrl[2].in, // Second free EPX buffer .data_buffer = &usb_dpram->epx_data[1 * 64], } } }; /** * @brief Given an endpoint address, return the usb_endpoint_configuration of that endpoint. Returns NULL * if an endpoint of that address is not found. * * @param addr * @return struct usb_endpoint_configuration* */ struct usb_endpoint_configuration *usb_get_endpoint_configuration(uint8_t addr) { struct usb_endpoint_configuration *endpoints = dev_config.endpoints; for (int i = 0; i < USB_NUM_ENDPOINTS; i++) { if (endpoints[i].descriptor && (endpoints[i].descriptor->bEndpointAddress == addr)) { return &endpoints[i]; } } return NULL; } /** * @brief Given a C string, fill the EP0 data buf with a USB string descriptor for that string. * * @param C string you would like to send to the USB host * @return the length of the string descriptor in EP0 buf */ uint8_t usb_prepare_string_descriptor(const unsigned char *str) { // 2 for bLength + bDescriptorType + strlen * 2 because string is unicode. i.e. other byte will be 0 uint8_t bLength = 2 + (strlen(str) * 2); static const uint8_t bDescriptorType = 0x03; volatile uint8_t *buf = &ep0_buf[0]; *buf++ = bLength; *buf++ = bDescriptorType; uint8_t c; do { c = *str++; *buf++ = c; *buf++ = 0; } while (c != '\0'); return bLength; } /** * @brief Take a buffer pointer located in the USB RAM and return as an offset of the RAM. * * @param buf * @return uint32_t */ static inline uint32_t usb_buffer_offset(volatile uint8_t *buf) { return (uint32_t) buf ^ (uint32_t) usb_dpram; } /** * @brief Set up the endpoint control register for an endpoint (if applicable. Not valid for EP0). * * @param ep */ void usb_setup_endpoint(const struct usb_endpoint_configuration *ep) { printf("Set up endpoint 0x%x with buffer address 0x%p\n", ep->descriptor->bEndpointAddress, ep->data_buffer); // EP0 doesn't have one so return if that is the case if (!ep->endpoint_control) { return; } // Get the data buffer as an offset of the USB controller's DPRAM uint32_t dpram_offset = usb_buffer_offset(ep->data_buffer); uint32_t reg = EP_CTRL_ENABLE_BITS | EP_CTRL_INTERRUPT_PER_BUFFER | (ep->descriptor->bmAttributes << EP_CTRL_BUFFER_TYPE_LSB) | dpram_offset; *ep->endpoint_control = reg; } /** * @brief Set up the endpoint control register for each endpoint. * */ void usb_setup_endpoints() { const struct usb_endpoint_configuration *endpoints = dev_config.endpoints; for (int i = 0; i < USB_NUM_ENDPOINTS; i++) { if (endpoints[i].descriptor && endpoints[i].handler) { usb_setup_endpoint(&endpoints[i]); } } } /** * @brief Set up the USB controller in device mode, clearing any previous state. * */ void usb_device_init() { // Reset usb controller reset_block(RESETS_RESET_USBCTRL_BITS); unreset_block_wait(RESETS_RESET_USBCTRL_BITS); // Clear any previous state in dpram just in case memset(usb_dpram, 0, sizeof(*usb_dpram)); // <1> // Enable USB interrupt at processor irq_set_enabled(USBCTRL_IRQ, true); // Mux the controller to the onboard usb phy usb_hw->muxing = USB_USB_MUXING_TO_PHY_BITS | USB_USB_MUXING_SOFTCON_BITS; // Force VBUS detect so the device thinks it is plugged into a host usb_hw->pwr = USB_USB_PWR_VBUS_DETECT_BITS | USB_USB_PWR_VBUS_DETECT_OVERRIDE_EN_BITS; // Enable the USB controller in device mode. usb_hw->main_ctrl = USB_MAIN_CTRL_CONTROLLER_EN_BITS; // Enable an interrupt per EP0 transaction usb_hw->sie_ctrl = USB_SIE_CTRL_EP0_INT_1BUF_BITS; // <2> // Enable interrupts for when a buffer is done, when the bus is reset, // and when a setup packet is received usb_hw->inte = USB_INTS_BUFF_STATUS_BITS | USB_INTS_BUS_RESET_BITS | USB_INTS_SETUP_REQ_BITS; // Set up endpoints (endpoint control registers) // described by device configuration usb_setup_endpoints(); // Present full speed device by enabling pull up on DP usb_hw_set->sie_ctrl = USB_SIE_CTRL_PULLUP_EN_BITS; } /** * @brief Given an endpoint configuration, returns true if the endpoint * is transmitting data to the host (i.e. is an IN endpoint) * * @param ep, the endpoint configuration * @return true * @return false */ static inline bool ep_is_tx(struct usb_endpoint_configuration *ep) { return ep->descriptor->bEndpointAddress & USB_DIR_IN; } /** * @brief Starts a transfer on a given endpoint. * * @param ep, the endpoint configuration. * @param buf, the data buffer to send. Only applicable if the endpoint is TX * @param len, the length of the data in buf (this example limits max len to one packet - 64 bytes) */ void usb_start_transfer(struct usb_endpoint_configuration *ep, uint8_t *buf, uint16_t len) { // We are asserting that the length is <= 64 bytes for simplicity of the example. // For multi packet transfers see the tinyusb port. assert(len <= 64); printf("Start transfer of len %d on ep addr 0x%x\n", len, ep->descriptor->bEndpointAddress); // Prepare buffer control register value uint32_t val = len | USB_BUF_CTRL_AVAIL; if (ep_is_tx(ep)) { // Need to copy the data from the user buffer to the usb memory memcpy((void *) ep->data_buffer, (void *) buf, len); // Mark as full val |= USB_BUF_CTRL_FULL; } // Set pid and flip for next transfer val |= ep->next_pid ? USB_BUF_CTRL_DATA1_PID : USB_BUF_CTRL_DATA0_PID; ep->next_pid ^= 1u; *ep->buffer_control = val; } /** * @brief Send device descriptor to host * */ void usb_handle_device_descriptor(void) { const struct usb_device_descriptor *d = dev_config.device_descriptor; // EP0 in struct usb_endpoint_configuration *ep = usb_get_endpoint_configuration(EP0_IN_ADDR); // Always respond with pid 1 ep->next_pid = 1; usb_start_transfer(ep, (uint8_t *) d, sizeof(struct usb_device_descriptor)); } /** * @brief Send the configuration descriptor (and potentially the configuration and endpoint descriptors) to the host. * * @param pkt, the setup packet received from the host. */ void usb_handle_config_descriptor(volatile struct usb_setup_packet *pkt) { uint8_t *buf = &ep0_buf[0]; // First request will want just the config descriptor const struct usb_configuration_descriptor *d = dev_config.config_descriptor; memcpy((void *) buf, d, sizeof(struct usb_configuration_descriptor)); buf += sizeof(struct usb_configuration_descriptor); // If we more than just the config descriptor copy it all if (pkt->wLength >= d->wTotalLength) { memcpy((void *) buf, dev_config.interface_descriptor, sizeof(struct usb_interface_descriptor)); buf += sizeof(struct usb_interface_descriptor); const struct usb_endpoint_configuration *ep = dev_config.endpoints; // Copy all the endpoint descriptors starting from EP1 for (uint i = 2; i < USB_NUM_ENDPOINTS; i++) { if (ep[i].descriptor) { memcpy((void *) buf, ep[i].descriptor, sizeof(struct usb_endpoint_descriptor)); buf += sizeof(struct usb_endpoint_descriptor); } } } // Send data // Get len by working out end of buffer subtract start of buffer uint32_t len = (uint32_t) buf - (uint32_t) &ep0_buf[0]; usb_start_transfer(usb_get_endpoint_configuration(EP0_IN_ADDR), &ep0_buf[0], len); } /** * @brief Handle a BUS RESET from the host by setting the device address back to 0. * */ void usb_bus_reset(void) { // Set address back to 0 dev_addr = 0; should_set_address = false; usb_hw->dev_addr_ctrl = 0; configured = false; } /** * @brief Send the requested string descriptor to the host. * * @param pkt, the setup packet from the host. */ void usb_handle_string_descriptor(volatile struct usb_setup_packet *pkt) { uint8_t i = pkt->wValue & 0xff; uint8_t len = 0; if (i == 0) { len = 4; memcpy(&ep0_buf[0], dev_config.lang_descriptor, len); } else { // Prepare fills in ep0_buf len = usb_prepare_string_descriptor(dev_config.descriptor_strings[i - 1]); } usb_start_transfer(usb_get_endpoint_configuration(EP0_IN_ADDR), &ep0_buf[0], len); } /** * @brief Handles a SET_ADDR request from the host. The actual setting of the device address in * hardware is done in ep0_in_handler. This is because we have to acknowledge the request first * as a device with address zero. * * @param pkt, the setup packet from the host. */ void usb_set_device_address(volatile struct usb_setup_packet *pkt) { // Set address is a bit of a strange case because we have to send a 0 length status packet first with // address 0 dev_addr = (pkt->wValue & 0xff); printf("Set address %d\r\n", dev_addr); // Will set address in the callback phase should_set_address = true; usb_start_transfer(usb_get_endpoint_configuration(EP0_IN_ADDR), NULL, 0); } /** * @brief Handles a SET_CONFIGRUATION request from the host. Assumes one configuration so simply * sends a zero length status packet back to the host. * * @param pkt, the setup packet from the host. */ void usb_set_device_configuration(volatile struct usb_setup_packet *pkt) { // Only one configuration so just acknowledge the request printf("Device Enumerated\r\n"); usb_start_transfer(usb_get_endpoint_configuration(EP0_IN_ADDR), NULL, 0); configured = true; } /** * @brief Respond to a setup packet from the host. * */ void usb_handle_setup_packet(void) { volatile struct usb_setup_packet *pkt = (volatile struct usb_setup_packet *) &usb_dpram->setup_packet; uint8_t req_direction = pkt->bmRequestType; uint8_t req = pkt->bRequest; // Reset PID to 1 for EP0 IN usb_get_endpoint_configuration(EP0_IN_ADDR)->next_pid = 1u; if (req_direction == USB_DIR_OUT) { if (req == USB_REQUEST_SET_ADDRESS) { usb_set_device_address(pkt); } else if (req == USB_REQUEST_SET_CONFIGURATION) { usb_set_device_configuration(pkt); } else { printf("Other OUT request (0x%x)\r\n", pkt->bRequest); } } else if (req_direction == USB_DIR_IN) { if (req == USB_REQUEST_GET_DESCRIPTOR) { uint16_t descriptor_type = pkt->wValue >> 8; switch (descriptor_type) { case USB_DT_DEVICE: usb_handle_device_descriptor(); printf("GET DEVICE DESCRIPTOR\r\n"); break; case USB_DT_CONFIG: usb_handle_config_descriptor(pkt); printf("GET CONFIG DESCRIPTOR\r\n"); break; case USB_DT_STRING: usb_handle_string_descriptor(pkt); printf("GET STRING DESCRIPTOR\r\n"); break; default: printf("Unhandled GET_DESCRIPTOR type 0x%x\r\n", descriptor_type); } } else { printf("Other IN request (0x%x)\r\n", pkt->bRequest); } } } /** * @brief Notify an endpoint that a transfer has completed. * * @param ep, the endpoint to notify. */ static void usb_handle_ep_buff_done(struct usb_endpoint_configuration *ep) { uint32_t buffer_control = *ep->buffer_control; // Get the transfer length for this endpoint uint16_t len = buffer_control & USB_BUF_CTRL_LEN_MASK; // Call that endpoints buffer done handler ep->handler((uint8_t *) ep->data_buffer, len); } /** * @brief Find the endpoint configuration for a specified endpoint number and * direction and notify it that a transfer has completed. * * @param ep_num * @param in */ static void usb_handle_buff_done(uint ep_num, bool in) { uint8_t ep_addr = ep_num | (in ? USB_DIR_IN : 0); printf("EP %d (in = %d) done\n", ep_num, in); for (uint i = 0; i < USB_NUM_ENDPOINTS; i++) { struct usb_endpoint_configuration *ep = &dev_config.endpoints[i]; if (ep->descriptor && ep->handler) { if (ep->descriptor->bEndpointAddress == ep_addr) { usb_handle_ep_buff_done(ep); return; } } } } /** * @brief Handle a "buffer status" irq. This means that one or more * buffers have been sent / received. Notify each endpoint where this * is the case. */ static void usb_handle_buff_status() { uint32_t buffers = usb_hw->buf_status; uint32_t remaining_buffers = buffers; uint bit = 1u; for (uint i = 0; remaining_buffers && i < USB_NUM_ENDPOINTS * 2; i++) { if (remaining_buffers & bit) { // clear this in advance usb_hw_clear->buf_status = bit; // IN transfer for even i, OUT transfer for odd i usb_handle_buff_done(i >> 1u, !(i & 1u)); remaining_buffers &= ~bit; } bit <<= 1u; } } /** * @brief USB interrupt handler * */ // tag::isr_setup_packet[] void isr_usbctrl(void) { // USB interrupt handler uint32_t status = usb_hw->ints; uint32_t handled = 0; // Setup packet received if (status & USB_INTS_SETUP_REQ_BITS) { handled |= USB_INTS_SETUP_REQ_BITS; usb_hw_clear->sie_status = USB_SIE_STATUS_SETUP_REC_BITS; usb_handle_setup_packet(); } // end::isr_setup_packet[] // Buffer status, one or more buffers have completed if (status & USB_INTS_BUFF_STATUS_BITS) { handled |= USB_INTS_BUFF_STATUS_BITS; usb_handle_buff_status(); } // Bus is reset if (status & USB_INTS_BUS_RESET_BITS) { printf("BUS RESET\n"); handled |= USB_INTS_BUS_RESET_BITS; usb_hw_clear->sie_status = USB_SIE_STATUS_BUS_RESET_BITS; usb_bus_reset(); } if (status ^ handled) { panic("Unhandled IRQ 0x%x\n", (uint) (status ^ handled)); } } /** * @brief EP0 in transfer complete. Either finish the SET_ADDRESS process, or receive a zero * length status packet from the host. * * @param buf the data that was sent * @param len the length that was sent */ void ep0_in_handler(uint8_t *buf, uint16_t len) { if (should_set_address) { // Set actual device address in hardware usb_hw->dev_addr_ctrl = dev_addr; should_set_address = false; } else { // Receive a zero length status packet from the host on EP0 OUT struct usb_endpoint_configuration *ep = usb_get_endpoint_configuration(EP0_OUT_ADDR); usb_start_transfer(ep, NULL, 0); } } void ep0_out_handler(uint8_t *buf, uint16_t len) { ; } // Device specific functions void ep1_out_handler(uint8_t *buf, uint16_t len) { printf("RX %d bytes from host\n", len); // Send data back to host struct usb_endpoint_configuration *ep = usb_get_endpoint_configuration(EP2_IN_ADDR); usb_start_transfer(ep, buf, len); } void ep2_in_handler(uint8_t *buf, uint16_t len) { printf("Sent %d bytes to host\n", len); // Get ready to rx again from host usb_start_transfer(usb_get_endpoint_configuration(EP1_OUT_ADDR), NULL, 64); } int main(void) { stdio_init_all(); printf("USB Device Low-Level hardware example\n"); usb_device_init(); // Wait until configured while (!configured) { tight_loop_contents(); } // Get ready to rx from host usb_start_transfer(usb_get_endpoint_configuration(EP1_OUT_ADDR), NULL, 64); // Everything is interrupt driven so just loop here while (1) { tight_loop_contents(); } return 0; }