/** * Copyright (c) 2020 Raspberry Pi (Trading) Ltd. * * SPDX-License-Identifier: BSD-3-Clause */ // PIO logic analyser example // // This program captures samples from a group of pins, at a fixed rate, once a // trigger condition is detected (level condition on one pin). The samples are // transferred to a capture buffer using the system DMA. // // 1 to 32 pins can be captured, at a sample rate no greater than system clock // frequency. #include #include #include "pico/stdlib.h" #include "hardware/pio.h" #include "hardware/dma.h" #include "hardware/structs/bus_ctrl.h" // Some logic to analyse: #include "hardware/structs/pwm.h" const uint CAPTURE_PIN_BASE = 16; const uint CAPTURE_PIN_COUNT = 2; const uint CAPTURE_N_SAMPLES = 96; static inline uint bits_packed_per_word(uint pin_count) { // If the number of pins to be sampled divides the shift register size, we // can use the full SR and FIFO width, and push when the input shift count // exactly reaches 32. If not, we have to push earlier, so we use the FIFO // a little less efficiently. const uint SHIFT_REG_WIDTH = 32; return SHIFT_REG_WIDTH - (SHIFT_REG_WIDTH % pin_count); } void logic_analyser_init(PIO pio, uint sm, uint pin_base, uint pin_count, float div) { // Load a program to capture n pins. This is just a single `in pins, n` // instruction with a wrap. uint16_t capture_prog_instr = pio_encode_in(pio_pins, pin_count); struct pio_program capture_prog = { .instructions = &capture_prog_instr, .length = 1, .origin = -1 }; uint offset = pio_add_program(pio, &capture_prog); // Configure state machine to loop over this `in` instruction forever, // with autopush enabled. pio_sm_config c = pio_get_default_sm_config(); sm_config_set_in_pins(&c, pin_base); sm_config_set_wrap(&c, offset, offset); sm_config_set_clkdiv(&c, div); // Note that we may push at a < 32 bit threshold if pin_count does not // divide 32. We are using shift-to-right, so the sample data ends up // left-justified in the FIFO in this case, with some zeroes at the LSBs. sm_config_set_in_shift(&c, true, true, bits_packed_per_word(pin_count)); sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_RX); pio_sm_init(pio, sm, offset, &c); } void logic_analyser_arm(PIO pio, uint sm, uint dma_chan, uint32_t *capture_buf, size_t capture_size_words, uint trigger_pin, bool trigger_level) { pio_sm_set_enabled(pio, sm, false); // Need to clear _input shift counter_, as well as FIFO, because there may be // partial ISR contents left over from a previous run. sm_restart does this. pio_sm_clear_fifos(pio, sm); pio_sm_restart(pio, sm); dma_channel_config c = dma_channel_get_default_config(dma_chan); channel_config_set_read_increment(&c, false); channel_config_set_write_increment(&c, true); channel_config_set_dreq(&c, pio_get_dreq(pio, sm, false)); dma_channel_configure(dma_chan, &c, capture_buf, // Destination pointer &pio->rxf[sm], // Source pointer capture_size_words, // Number of transfers true // Start immediately ); pio_sm_exec(pio, sm, pio_encode_wait_gpio(trigger_level, trigger_pin)); pio_sm_set_enabled(pio, sm, true); } void print_capture_buf(const uint32_t *buf, uint pin_base, uint pin_count, uint32_t n_samples) { // Display the capture buffer in text form, like this: // 00: __--__--__--__--__--__-- // 01: ____----____----____---- printf("Capture:\n"); // Each FIFO record may be only partially filled with bits, depending on // whether pin_count is a factor of 32. uint record_size_bits = bits_packed_per_word(pin_count); for (int pin = 0; pin < pin_count; ++pin) { printf("%02d: ", pin + pin_base); for (int sample = 0; sample < n_samples; ++sample) { uint bit_index = pin + sample * pin_count; uint word_index = bit_index / record_size_bits; // Data is left-justified in each FIFO entry, hence the (32 - record_size_bits) offset uint word_mask = 1u << (bit_index % record_size_bits + 32 - record_size_bits); printf(buf[word_index] & word_mask ? "-" : "_"); } printf("\n"); } } int main() { stdio_init_all(); printf("PIO logic analyser example\n"); // We're going to capture into a u32 buffer, for best DMA efficiency. Need // to be careful of rounding in case the number of pins being sampled // isn't a power of 2. uint total_sample_bits = CAPTURE_N_SAMPLES * CAPTURE_PIN_COUNT; total_sample_bits += bits_packed_per_word(CAPTURE_PIN_COUNT) - 1; uint buf_size_words = total_sample_bits / bits_packed_per_word(CAPTURE_PIN_COUNT); uint32_t *capture_buf = malloc(buf_size_words * sizeof(uint32_t)); hard_assert(capture_buf); // Grant high bus priority to the DMA, so it can shove the processors out // of the way. This should only be needed if you are pushing things up to // >16bits/clk here, i.e. if you need to saturate the bus completely. bus_ctrl_hw->priority = BUSCTRL_BUS_PRIORITY_DMA_W_BITS | BUSCTRL_BUS_PRIORITY_DMA_R_BITS; PIO pio = pio0; uint sm = 0; uint dma_chan = 0; logic_analyser_init(pio, sm, CAPTURE_PIN_BASE, CAPTURE_PIN_COUNT, 1.f); printf("Arming trigger\n"); logic_analyser_arm(pio, sm, dma_chan, capture_buf, buf_size_words, CAPTURE_PIN_BASE, true); printf("Starting PWM example\n"); // PWM example: ----------------------------------------------------------- gpio_set_function(CAPTURE_PIN_BASE, GPIO_FUNC_PWM); gpio_set_function(CAPTURE_PIN_BASE + 1, GPIO_FUNC_PWM); // Topmost value of 3: count from 0 to 3 and then wrap, so period is 4 cycles pwm_hw->slice[0].top = 3; // Divide frequency by two to slow things down a little pwm_hw->slice[0].div = 4 << PWM_CH0_DIV_INT_LSB; // Set channel A to be high for 1 cycle each period (duty cycle 1/4) and // channel B for 3 cycles (duty cycle 3/4) pwm_hw->slice[0].cc = (1 << PWM_CH0_CC_A_LSB) | (3 << PWM_CH0_CC_B_LSB); // Enable this PWM slice pwm_hw->slice[0].csr = PWM_CH0_CSR_EN_BITS; // ------------------------------------------------------------------------ // The logic analyser should have started capturing as soon as it saw the // first transition. Wait until the last sample comes in from the DMA. dma_channel_wait_for_finish_blocking(dma_chan); print_capture_buf(capture_buf, CAPTURE_PIN_BASE, CAPTURE_PIN_COUNT, CAPTURE_N_SAMPLES); }