add a quadrature encoder pio example (#126)
Co-authored-by: Paulo Marques <pm@quant-insight.com>
This commit is contained in:
parent
6e647c6f26
commit
09e34e7c1a
@ -10,6 +10,7 @@ if (NOT PICO_NO_HARDWARE)
|
||||
add_subdirectory(manchester_encoding)
|
||||
add_subdirectory(pio_blink)
|
||||
add_subdirectory(pwm)
|
||||
add_subdirectory(quadrature_encoder)
|
||||
add_subdirectory(spi)
|
||||
add_subdirectory(squarewave)
|
||||
add_subdirectory(st7789_lcd)
|
||||
|
||||
18
pio/quadrature_encoder/CMakeLists.txt
Normal file
18
pio/quadrature_encoder/CMakeLists.txt
Normal file
@ -0,0 +1,18 @@
|
||||
add_executable(pio_quadrature_encoder)
|
||||
|
||||
pico_generate_pio_header(pio_quadrature_encoder ${CMAKE_CURRENT_LIST_DIR}/quadrature_encoder.pio)
|
||||
|
||||
target_sources(pio_quadrature_encoder PRIVATE quadrature_encoder.c)
|
||||
|
||||
target_link_libraries(pio_quadrature_encoder PRIVATE
|
||||
pico_stdlib
|
||||
pico_multicore
|
||||
hardware_pio
|
||||
)
|
||||
|
||||
pico_enable_stdio_usb(pio_quadrature_encoder 1)
|
||||
|
||||
pico_add_extra_outputs(pio_quadrature_encoder)
|
||||
|
||||
# add url via pico_set_program_url
|
||||
example_auto_set_url(pio_quadrature_encoder)
|
||||
59
pio/quadrature_encoder/quadrature_encoder.c
Normal file
59
pio/quadrature_encoder/quadrature_encoder.c
Normal file
@ -0,0 +1,59 @@
|
||||
#include <stdio.h>
|
||||
#include "pico/stdlib.h"
|
||||
#include "hardware/pio.h"
|
||||
#include "hardware/timer.h"
|
||||
|
||||
#include "quadrature_encoder.pio.h"
|
||||
|
||||
//
|
||||
// ---- quadrature encoder interface example
|
||||
//
|
||||
// the PIO program reads phase A/B of a quadrature encoder and increments or
|
||||
// decrements an internal counter to keep the current absolute step count
|
||||
// updated. At any point, the main code can query the current count by using
|
||||
// the quadrature_encoder_*_count functions. The counter is kept in a full
|
||||
// 32 bit register that just wraps around. Two's complement arithmetic means
|
||||
// that it can be interpreted as a 32 bit signed or unsigned value and it will
|
||||
// work anyway.
|
||||
//
|
||||
// As an example, a two wheel robot being controlled at 100Hz, can use two
|
||||
// state machines to read the two encoders and in the main control loop it can
|
||||
// simply ask for the current encoder counts to get the absolute step count. It
|
||||
// can also subtract the values from the last sample to check how many steps
|
||||
// each wheel as done since the last sample period.
|
||||
//
|
||||
// One advantage of this approach is that it requires zero CPU time to keep the
|
||||
// encoder count updated and because of that it supports very high step rates.
|
||||
//
|
||||
|
||||
|
||||
int main()
|
||||
{
|
||||
int new_value, delta, old_value = 0;
|
||||
|
||||
// Base pin to connect the A phase of the encoder.
|
||||
// The B phase must be connected to the next pin
|
||||
const uint PIN_AB = 10;
|
||||
|
||||
stdio_init_all();
|
||||
|
||||
PIO pio = pio0;
|
||||
const uint sm = 0;
|
||||
|
||||
uint offset = pio_add_program(pio, &quadrature_encoder_program);
|
||||
quadrature_encoder_program_init(pio, sm, offset, PIN_AB, 0);
|
||||
|
||||
while (1) {
|
||||
// note: thanks to two's complement arithmetic delta will always
|
||||
// be correct even when new_value wraps around MAXINT / MININT
|
||||
new_value = quadrature_encoder_get_count(pio, sm);
|
||||
delta = new_value - old_value;
|
||||
old_value = new_value;
|
||||
|
||||
printf("position %8d, delta %6d\n", new_value, delta);
|
||||
sleep_ms(100);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
160
pio/quadrature_encoder/quadrature_encoder.pio
Normal file
160
pio/quadrature_encoder/quadrature_encoder.pio
Normal file
@ -0,0 +1,160 @@
|
||||
|
||||
.program quadrature_encoder
|
||||
|
||||
; this code must be loaded into address 0, but at 29 instructions, it probably
|
||||
; wouldn't be able to share space with other programs anyway
|
||||
.origin 0
|
||||
|
||||
|
||||
; the code works by running a loop that contiously shifts the 2 phase pins into
|
||||
; ISR and looks at the lower 4 bits to do a computed jump to an instruction that
|
||||
; does the proper "do nothing" | "increment" | "decrement" action for that pin
|
||||
; state change (or no change)
|
||||
|
||||
; ISR holds the last state of the 2 pins during most of the code. The Y register
|
||||
; keeps the current encoder count and is incremented / decremented according to
|
||||
; the steps sampled
|
||||
|
||||
; writing any non zero value to the TX FIFO makes the state machine push the
|
||||
; current count to RX FIFO between 6 to 18 clocks afterwards. The worst case
|
||||
; sampling loop takes 14 cycles, so this program is able to read step rates up
|
||||
; to sysclk / 14 (e.g., sysclk 125MHz, max step rate = 8.9 Msteps/sec)
|
||||
|
||||
|
||||
; 00 state
|
||||
JMP update ; read 00
|
||||
JMP decrement ; read 01
|
||||
JMP increment ; read 10
|
||||
JMP update ; read 11
|
||||
|
||||
; 01 state
|
||||
JMP increment ; read 00
|
||||
JMP update ; read 01
|
||||
JMP update ; read 10
|
||||
JMP decrement ; read 11
|
||||
|
||||
; 10 state
|
||||
JMP decrement ; read 00
|
||||
JMP update ; read 01
|
||||
JMP update ; read 10
|
||||
JMP increment ; read 11
|
||||
|
||||
; to reduce code size, the last 2 states are implemented in place and become the
|
||||
; target for the other jumps
|
||||
|
||||
; 11 state
|
||||
JMP update ; read 00
|
||||
JMP increment ; read 01
|
||||
decrement:
|
||||
; note: the target of this instruction must be the next address, so that
|
||||
; the effect of the instruction does not depend on the value of Y. The
|
||||
; same is true for the "JMP X--" below. Basically "JMP Y--, <next addr>"
|
||||
; is just a pure "decrement Y" instruction, with no other side effects
|
||||
JMP Y--, update ; read 10
|
||||
|
||||
; this is where the main loop starts
|
||||
.wrap_target
|
||||
update:
|
||||
; we start by checking the TX FIFO to see if the main code is asking for
|
||||
; the current count after the PULL noblock, OSR will have either 0 if
|
||||
; there was nothing or the value that was there
|
||||
SET X, 0
|
||||
PULL noblock
|
||||
|
||||
; since there are not many free registers, and PULL is done into OSR, we
|
||||
; have to do some juggling to avoid losing the state information and
|
||||
; still place the values where we need them
|
||||
MOV X, OSR
|
||||
MOV OSR, ISR
|
||||
|
||||
; the main code did not ask for the count, so just go to "sample_pins"
|
||||
JMP !X, sample_pins
|
||||
|
||||
; if it did ask for the count, then we push it
|
||||
MOV ISR, Y ; we trash ISR, but we already have a copy in OSR
|
||||
PUSH
|
||||
|
||||
sample_pins:
|
||||
; we shift into ISR the last state of the 2 input pins (now in OSR) and
|
||||
; the new state of the 2 pins, thus producing the 4 bit target for the
|
||||
; computed jump into the correct action for this state
|
||||
MOV ISR, NULL
|
||||
IN OSR, 2
|
||||
IN PINS, 2
|
||||
MOV PC, ISR
|
||||
|
||||
; the PIO does not have a increment instruction, so to do that we do a
|
||||
; negate, decrement, negate sequence
|
||||
increment:
|
||||
MOV X, !Y
|
||||
JMP X--, increment_cont
|
||||
increment_cont:
|
||||
MOV Y, !X
|
||||
.wrap ; the .wrap here avoids one jump instruction and saves a cycle too
|
||||
|
||||
|
||||
|
||||
% c-sdk {
|
||||
|
||||
#include "hardware/clocks.h"
|
||||
#include "hardware/gpio.h"
|
||||
|
||||
// max_step_rate is used to lower the clock of the state machine to save power
|
||||
// if the application doesn't require a very high sampling rate. Passing zero
|
||||
// will set the clock to the maximum, which gives a max step rate of around
|
||||
// 8.9 Msteps/sec at 125MHz
|
||||
|
||||
static inline void quadrature_encoder_program_init(PIO pio, uint sm, uint offset, uint pin, int max_step_rate)
|
||||
{
|
||||
pio_sm_set_consecutive_pindirs(pio, sm, pin, 2, false);
|
||||
pio_gpio_init(pio, pin);
|
||||
gpio_pull_up(pin);
|
||||
|
||||
pio_sm_config c = quadrature_encoder_program_get_default_config(offset);
|
||||
sm_config_set_in_pins(&c, pin); // for WAIT, IN
|
||||
sm_config_set_jmp_pin(&c, pin); // for JMP
|
||||
// shift to left, autopull disabled
|
||||
sm_config_set_in_shift(&c, false, false, 32);
|
||||
// don't join FIFO's
|
||||
sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_NONE);
|
||||
|
||||
// passing "0" as the sample frequency,
|
||||
if (max_step_rate == 0) {
|
||||
sm_config_set_clkdiv(&c, 1.0);
|
||||
} else {
|
||||
// one state machine loop takes at most 14 cycles
|
||||
float div = (float)clock_get_hz(clk_sys) / (14 * max_step_rate);
|
||||
sm_config_set_clkdiv(&c, div);
|
||||
}
|
||||
|
||||
pio_sm_init(pio, sm, offset, &c);
|
||||
pio_sm_set_enabled(pio, sm, true);
|
||||
}
|
||||
|
||||
|
||||
// When requesting the current count we may have to wait a few cycles (average
|
||||
// ~11 sysclk cycles) for the state machine to reply. If we are reading multiple
|
||||
// encoders, we may request them all in one go and then fetch them all, thus
|
||||
// avoiding doing the wait multiple times. If we are reading just one encoder,
|
||||
// we can use the "get_count" function to request and wait
|
||||
|
||||
static inline void quadrature_encoder_request_count(PIO pio, uint sm)
|
||||
{
|
||||
pio->txf[sm] = 1;
|
||||
}
|
||||
|
||||
static inline int32_t quadrature_encoder_fetch_count(PIO pio, uint sm)
|
||||
{
|
||||
while (pio_sm_is_rx_fifo_empty(pio, sm))
|
||||
tight_loop_contents();
|
||||
return pio->rxf[sm];
|
||||
}
|
||||
|
||||
static inline int32_t quadrature_encoder_get_count(PIO pio, uint sm)
|
||||
{
|
||||
quadrature_encoder_request_count(pio, sm);
|
||||
return quadrature_encoder_fetch_count(pio, sm);
|
||||
}
|
||||
|
||||
%}
|
||||
|
||||
Reference in New Issue
Block a user