2025-05-02 13:40:50 +02:00

1526 lines
50 KiB
Rust

//! UART driver.
use core::future::poll_fn;
use core::marker::PhantomData;
use core::task::Poll;
use atomic_polyfill::{AtomicU16, Ordering};
use embassy_futures::select::{select, Either};
use embassy_hal_internal::{Peri, PeripheralType};
use embassy_sync::waitqueue::AtomicWaker;
use embassy_time::{Delay, Timer};
use pac::uart::regs::Uartris;
use crate::clocks::clk_peri_freq;
use crate::dma::{AnyChannel, Channel};
use crate::gpio::{AnyPin, SealedPin};
use crate::interrupt::typelevel::{Binding, Interrupt as _};
use crate::interrupt::{Interrupt, InterruptExt};
use crate::pac::io::vals::{Inover, Outover};
use crate::{interrupt, pac, peripherals, RegExt};
mod buffered;
pub use buffered::{BufferedInterruptHandler, BufferedUart, BufferedUartRx, BufferedUartTx};
/// Word length.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum DataBits {
/// 5 bits.
DataBits5,
/// 6 bits.
DataBits6,
/// 7 bits.
DataBits7,
/// 8 bits.
DataBits8,
}
impl DataBits {
fn bits(&self) -> u8 {
match self {
Self::DataBits5 => 0b00,
Self::DataBits6 => 0b01,
Self::DataBits7 => 0b10,
Self::DataBits8 => 0b11,
}
}
}
/// Parity bit.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum Parity {
/// No parity.
ParityNone,
/// Even parity.
ParityEven,
/// Odd parity.
ParityOdd,
}
/// Stop bits.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum StopBits {
#[doc = "1 stop bit"]
STOP1,
#[doc = "2 stop bits"]
STOP2,
}
/// UART config.
#[non_exhaustive]
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct Config {
/// Baud rate.
pub baudrate: u32,
/// Word length.
pub data_bits: DataBits,
/// Stop bits.
pub stop_bits: StopBits,
/// Parity bit.
pub parity: Parity,
/// Invert the tx pin output
pub invert_tx: bool,
/// Invert the rx pin input
pub invert_rx: bool,
/// Invert the rts pin
pub invert_rts: bool,
/// Invert the cts pin
pub invert_cts: bool,
}
impl Default for Config {
fn default() -> Self {
Self {
baudrate: 115200,
data_bits: DataBits::DataBits8,
stop_bits: StopBits::STOP1,
parity: Parity::ParityNone,
invert_rx: false,
invert_tx: false,
invert_rts: false,
invert_cts: false,
}
}
}
/// Serial error
#[derive(Debug, Eq, PartialEq, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {
/// Triggered when the FIFO (or shift-register) is overflowed.
Overrun,
/// Triggered when a break is received
Break,
/// Triggered when there is a parity mismatch between what's received and
/// our settings.
Parity,
/// Triggered when the received character didn't have a valid stop bit.
Framing,
}
/// Read To Break error
#[derive(Debug, Eq, PartialEq, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum ReadToBreakError {
/// Read this many bytes, but never received a line break.
MissingBreak(usize),
/// Other, standard issue with the serial request
Other(Error),
}
/// Internal DMA state of UART RX.
pub struct DmaState {
rx_err_waker: AtomicWaker,
rx_errs: AtomicU16,
}
/// UART driver.
pub struct Uart<'d, M: Mode> {
tx: UartTx<'d, M>,
rx: UartRx<'d, M>,
}
/// UART TX driver.
pub struct UartTx<'d, M: Mode> {
info: &'static Info,
tx_dma: Option<Peri<'d, AnyChannel>>,
phantom: PhantomData<M>,
}
/// UART RX driver.
pub struct UartRx<'d, M: Mode> {
info: &'static Info,
dma_state: &'static DmaState,
rx_dma: Option<Peri<'d, AnyChannel>>,
phantom: PhantomData<M>,
}
impl<'d, M: Mode> UartTx<'d, M> {
/// Create a new DMA-enabled UART which can only send data
pub fn new<T: Instance>(
_uart: Peri<'d, T>,
tx: Peri<'d, impl TxPin<T>>,
tx_dma: Peri<'d, impl Channel>,
config: Config,
) -> Self {
Uart::<M>::init(T::info(), Some(tx.into()), None, None, None, config);
Self::new_inner(T::info(), Some(tx_dma.into()))
}
fn new_inner(info: &'static Info, tx_dma: Option<Peri<'d, AnyChannel>>) -> Self {
Self {
info,
tx_dma,
phantom: PhantomData,
}
}
/// Transmit the provided buffer blocking execution until done.
pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> {
let r = self.info.regs;
for &b in buffer {
while r.uartfr().read().txff() {}
r.uartdr().write(|w| w.set_data(b));
}
Ok(())
}
/// Flush UART TX blocking execution until done.
pub fn blocking_flush(&mut self) -> Result<(), Error> {
while !self.info.regs.uartfr().read().txfe() {}
Ok(())
}
/// Check if UART is busy transmitting.
pub fn busy(&self) -> bool {
self.info.regs.uartfr().read().busy()
}
/// Assert a break condition after waiting for the transmit buffers to empty,
/// for the specified number of bit times. This condition must be asserted
/// for at least two frame times to be effective, `bits` will adjusted
/// according to frame size, parity, and stop bit settings to ensure this.
///
/// This method may block for a long amount of time since it has to wait
/// for the transmit fifo to empty, which may take a while on slow links.
pub async fn send_break(&mut self, bits: u32) {
let regs = self.info.regs;
let bits = bits.max({
let lcr = regs.uartlcr_h().read();
let width = lcr.wlen() as u32 + 5;
let parity = lcr.pen() as u32;
let stops = 1 + lcr.stp2() as u32;
2 * (1 + width + parity + stops)
});
let divx64 = (((regs.uartibrd().read().baud_divint() as u32) << 6)
+ regs.uartfbrd().read().baud_divfrac() as u32) as u64;
let div_clk = clk_peri_freq() as u64 * 64;
let wait_usecs = (1_000_000 * bits as u64 * divx64 * 16 + div_clk - 1) / div_clk;
self.blocking_flush().unwrap();
while self.busy() {}
regs.uartlcr_h().write_set(|w| w.set_brk(true));
Timer::after_micros(wait_usecs).await;
regs.uartlcr_h().write_clear(|w| w.set_brk(true));
}
}
impl<'d> UartTx<'d, Blocking> {
/// Create a new UART TX instance for blocking mode operations.
pub fn new_blocking<T: Instance>(_uart: Peri<'d, T>, tx: Peri<'d, impl TxPin<T>>, config: Config) -> Self {
Uart::<Blocking>::init(T::info(), Some(tx.into()), None, None, None, config);
Self::new_inner(T::info(), None)
}
/// Convert this uart TX instance into a buffered uart using the provided
/// irq and transmit buffer.
pub fn into_buffered<T: Instance>(
self,
_irq: impl Binding<T::Interrupt, BufferedInterruptHandler<T>>,
tx_buffer: &'d mut [u8],
) -> BufferedUartTx {
buffered::init_buffers(T::info(), T::buffered_state(), Some(tx_buffer), None);
BufferedUartTx {
info: T::info(),
state: T::buffered_state(),
}
}
}
impl<'d> UartTx<'d, Async> {
/// Write to UART TX from the provided buffer using DMA.
pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> {
let ch = self.tx_dma.as_mut().unwrap().reborrow();
let transfer = unsafe {
self.info.regs.uartdmacr().write_set(|reg| {
reg.set_txdmae(true);
});
// If we don't assign future to a variable, the data register pointer
// is held across an await and makes the future non-Send.
crate::dma::write(
ch,
buffer,
self.info.regs.uartdr().as_ptr() as *mut _,
self.info.tx_dreq.into(),
)
};
transfer.await;
Ok(())
}
}
impl<'d, M: Mode> UartRx<'d, M> {
/// Create a new DMA-enabled UART which can only receive data
pub fn new<T: Instance>(
_uart: Peri<'d, T>,
rx: Peri<'d, impl RxPin<T>>,
_irq: impl Binding<T::Interrupt, InterruptHandler<T>>,
rx_dma: Peri<'d, impl Channel>,
config: Config,
) -> Self {
Uart::<M>::init(T::info(), None, Some(rx.into()), None, None, config);
Self::new_inner(T::info(), T::dma_state(), true, Some(rx_dma.into()))
}
fn new_inner(
info: &'static Info,
dma_state: &'static DmaState,
has_irq: bool,
rx_dma: Option<Peri<'d, AnyChannel>>,
) -> Self {
debug_assert_eq!(has_irq, rx_dma.is_some());
if has_irq {
// disable all error interrupts initially
info.regs.uartimsc().write(|w| w.0 = 0);
info.interrupt.unpend();
unsafe { info.interrupt.enable() };
}
Self {
info,
dma_state,
rx_dma,
phantom: PhantomData,
}
}
/// Read from UART RX blocking execution until done.
pub fn blocking_read(&mut self, mut buffer: &mut [u8]) -> Result<(), Error> {
while !buffer.is_empty() {
let received = self.drain_fifo(buffer).map_err(|(_i, e)| e)?;
buffer = &mut buffer[received..];
}
Ok(())
}
/// Returns Ok(len) if no errors occurred. Returns Err((len, err)) if an error was
/// encountered. in both cases, `len` is the number of *good* bytes copied into
/// `buffer`.
fn drain_fifo(&mut self, buffer: &mut [u8]) -> Result<usize, (usize, Error)> {
let r = self.info.regs;
for (i, b) in buffer.iter_mut().enumerate() {
if r.uartfr().read().rxfe() {
return Ok(i);
}
let dr = r.uartdr().read();
if dr.oe() {
return Err((i, Error::Overrun));
} else if dr.be() {
return Err((i, Error::Break));
} else if dr.pe() {
return Err((i, Error::Parity));
} else if dr.fe() {
return Err((i, Error::Framing));
} else {
*b = dr.data();
}
}
Ok(buffer.len())
}
}
impl<'d, M: Mode> Drop for UartRx<'d, M> {
fn drop(&mut self) {
if self.rx_dma.is_some() {
self.info.interrupt.disable();
// clear dma flags. irq handlers use these to disambiguate among themselves.
self.info.regs.uartdmacr().write_clear(|reg| {
reg.set_rxdmae(true);
reg.set_txdmae(true);
reg.set_dmaonerr(true);
});
}
}
}
impl<'d> UartRx<'d, Blocking> {
/// Create a new UART RX instance for blocking mode operations.
pub fn new_blocking<T: Instance>(_uart: Peri<'d, T>, rx: Peri<'d, impl RxPin<T>>, config: Config) -> Self {
Uart::<Blocking>::init(T::info(), None, Some(rx.into()), None, None, config);
Self::new_inner(T::info(), T::dma_state(), false, None)
}
/// Convert this uart RX instance into a buffered uart using the provided
/// irq and receive buffer.
pub fn into_buffered<T: Instance>(
self,
_irq: impl Binding<T::Interrupt, BufferedInterruptHandler<T>>,
rx_buffer: &'d mut [u8],
) -> BufferedUartRx {
buffered::init_buffers(T::info(), T::buffered_state(), None, Some(rx_buffer));
BufferedUartRx {
info: T::info(),
state: T::buffered_state(),
}
}
}
/// Interrupt handler.
pub struct InterruptHandler<T: Instance> {
_uart: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
unsafe fn on_interrupt() {
let uart = T::info().regs;
if !uart.uartdmacr().read().rxdmae() {
return;
}
let state = T::dma_state();
let errs = uart.uartris().read();
state.rx_errs.store(errs.0 as u16, Ordering::Relaxed);
state.rx_err_waker.wake();
// disable the error interrupts instead of clearing the flags. clearing the
// flags would allow the dma transfer to continue, potentially signaling
// completion before we can check for errors that happened *during* the transfer.
uart.uartimsc().write_clear(|w| w.0 = errs.0);
}
}
impl<'d> UartRx<'d, Async> {
/// Read from UART RX into the provided buffer.
pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
// clear error flags before we drain the fifo. errors that have accumulated
// in the flags will also be present in the fifo.
self.dma_state.rx_errs.store(0, Ordering::Relaxed);
self.info.regs.uarticr().write(|w| {
w.set_oeic(true);
w.set_beic(true);
w.set_peic(true);
w.set_feic(true);
});
// then drain the fifo. we need to read at most 32 bytes. errors that apply
// to fifo bytes will be reported directly.
let buffer = match {
let limit = buffer.len().min(32);
self.drain_fifo(&mut buffer[0..limit])
} {
Ok(len) if len < buffer.len() => &mut buffer[len..],
Ok(_) => return Ok(()),
Err((_i, e)) => return Err(e),
};
// start a dma transfer. if errors have happened in the interim some error
// interrupt flags will have been raised, and those will be picked up immediately
// by the interrupt handler.
let ch = self.rx_dma.as_mut().unwrap().reborrow();
self.info.regs.uartimsc().write_set(|w| {
w.set_oeim(true);
w.set_beim(true);
w.set_peim(true);
w.set_feim(true);
});
self.info.regs.uartdmacr().write_set(|reg| {
reg.set_rxdmae(true);
reg.set_dmaonerr(true);
});
let transfer = unsafe {
// If we don't assign future to a variable, the data register pointer
// is held across an await and makes the future non-Send.
crate::dma::read(
ch,
self.info.regs.uartdr().as_ptr() as *const _,
buffer,
self.info.rx_dreq.into(),
)
};
// wait for either the transfer to complete or an error to happen.
let transfer_result = select(
transfer,
poll_fn(|cx| {
self.dma_state.rx_err_waker.register(cx.waker());
match self.dma_state.rx_errs.swap(0, Ordering::Relaxed) {
0 => Poll::Pending,
e => Poll::Ready(Uartris(e as u32)),
}
}),
)
.await;
let errors = match transfer_result {
Either::First(()) => {
// We're here because the DMA finished, BUT if an error occurred on the LAST
// byte, then we may still need to grab the error state!
Uartris(self.dma_state.rx_errs.swap(0, Ordering::Relaxed) as u32)
}
Either::Second(e) => {
// We're here because we errored, which means this is the error that
// was problematic.
e
}
};
// If we got no error, just return at this point
if errors.0 == 0 {
return Ok(());
}
// If we DID get an error, we need to figure out which one it was.
if errors.oeris() {
return Err(Error::Overrun);
} else if errors.beris() {
return Err(Error::Break);
} else if errors.peris() {
return Err(Error::Parity);
} else if errors.feris() {
return Err(Error::Framing);
}
unreachable!("unrecognized rx error");
}
/// Read from the UART, waiting for a line break.
///
/// We read until one of the following occurs:
///
/// * We read `buffer.len()` bytes without a line break
/// * returns `Err(ReadToBreakError::MissingBreak(buffer.len()))`
/// * We read `n` bytes then a line break occurs
/// * returns `Ok(n)`
/// * We encounter some error OTHER than a line break
/// * returns `Err(ReadToBreakError::Other(error))`
///
/// **NOTE**: you MUST provide a buffer one byte larger than your largest expected
/// message to reliably detect the framing on one single call to `read_to_break()`.
///
/// * If you expect a message of 20 bytes + line break, and provide a 20-byte buffer:
/// * The first call to `read_to_break()` will return `Err(ReadToBreakError::MissingBreak(20))`
/// * The next call to `read_to_break()` will immediately return `Ok(0)`, from the "stale" line break
/// * If you expect a message of 20 bytes + line break, and provide a 21-byte buffer:
/// * The first call to `read_to_break()` will return `Ok(20)`.
/// * The next call to `read_to_break()` will work as expected
pub async fn read_to_break(&mut self, buffer: &mut [u8]) -> Result<usize, ReadToBreakError> {
self.read_to_break_with_count(buffer, 0).await
}
/// Read from the UART, waiting for a line break as soon as at least `min_count` bytes have been read.
///
/// We read until one of the following occurs:
///
/// * We read `buffer.len()` bytes without a line break
/// * returns `Err(ReadToBreakError::MissingBreak(buffer.len()))`
/// * We read `n > min_count` bytes then a line break occurs
/// * returns `Ok(n)`
/// * We encounter some error OTHER than a line break
/// * returns `Err(ReadToBreakError::Other(error))`
///
/// If a line break occurs before `min_count` bytes have been read, the break will be ignored and the read will continue
///
/// **NOTE**: you MUST provide a buffer one byte larger than your largest expected
/// message to reliably detect the framing on one single call to `read_to_break()`.
///
/// * If you expect a message of 20 bytes + line break, and provide a 20-byte buffer:
/// * The first call to `read_to_break()` will return `Err(ReadToBreakError::MissingBreak(20))`
/// * The next call to `read_to_break()` will immediately return `Ok(0)`, from the "stale" line break
/// * If you expect a message of 20 bytes + line break, and provide a 21-byte buffer:
/// * The first call to `read_to_break()` will return `Ok(20)`.
/// * The next call to `read_to_break()` will work as expected
pub async fn read_to_break_with_count(
&mut self,
buffer: &mut [u8],
min_count: usize,
) -> Result<usize, ReadToBreakError> {
// clear error flags before we drain the fifo. errors that have accumulated
// in the flags will also be present in the fifo.
self.dma_state.rx_errs.store(0, Ordering::Relaxed);
self.info.regs.uarticr().write(|w| {
w.set_oeic(true);
w.set_beic(true);
w.set_peic(true);
w.set_feic(true);
});
// then drain the fifo. we need to read at most 32 bytes. errors that apply
// to fifo bytes will be reported directly.
let mut sbuffer = match {
let limit = buffer.len().min(32);
self.drain_fifo(&mut buffer[0..limit])
} {
// Drained fifo, still some room left!
Ok(len) if len < buffer.len() => &mut buffer[len..],
// Drained (some/all of the fifo), no room left
Ok(len) => return Err(ReadToBreakError::MissingBreak(len)),
// We got a break WHILE draining the FIFO, return what we did get before the break
Err((len, Error::Break)) => {
if len < min_count && len < buffer.len() {
&mut buffer[len..]
} else {
return Ok(len);
}
}
// Some other error, just return the error
Err((_i, e)) => return Err(ReadToBreakError::Other(e)),
};
// start a dma transfer. if errors have happened in the interim some error
// interrupt flags will have been raised, and those will be picked up immediately
// by the interrupt handler.
let ch = self.rx_dma.as_mut().unwrap();
self.info.regs.uartimsc().write_set(|w| {
w.set_oeim(true);
w.set_beim(true);
w.set_peim(true);
w.set_feim(true);
});
self.info.regs.uartdmacr().write_set(|reg| {
reg.set_rxdmae(true);
reg.set_dmaonerr(true);
});
loop {
let transfer = unsafe {
// If we don't assign future to a variable, the data register pointer
// is held across an await and makes the future non-Send.
crate::dma::read(
ch.reborrow(),
self.info.regs.uartdr().as_ptr() as *const _,
sbuffer,
self.info.rx_dreq.into(),
)
};
// wait for either the transfer to complete or an error to happen.
let transfer_result = select(
transfer,
poll_fn(|cx| {
self.dma_state.rx_err_waker.register(cx.waker());
match self.dma_state.rx_errs.swap(0, Ordering::Relaxed) {
0 => Poll::Pending,
e => Poll::Ready(Uartris(e as u32)),
}
}),
)
.await;
// Figure out our error state
let errors = match transfer_result {
Either::First(()) => {
// We're here because the DMA finished, BUT if an error occurred on the LAST
// byte, then we may still need to grab the error state!
Uartris(self.dma_state.rx_errs.swap(0, Ordering::Relaxed) as u32)
}
Either::Second(e) => {
// We're here because we errored, which means this is the error that
// was problematic.
e
}
};
if errors.0 == 0 {
// No errors? That means we filled the buffer without a line break.
// For THIS function, that's a problem.
return Err(ReadToBreakError::MissingBreak(buffer.len()));
} else if errors.beris() {
// We got a Line Break! By this point, we've finished/aborted the DMA
// transaction, which means that we need to figure out where it left off
// by looking at the write_addr.
//
// First, we do a sanity check to make sure the write value is within the
// range of DMA we just did.
let sval = buffer.as_ptr() as usize;
let eval = sval + buffer.len();
// This is the address where the DMA would write to next
let next_addr = ch.regs().write_addr().read() as usize;
// If we DON'T end up inside the range, something has gone really wrong.
// Note that it's okay that `eval` is one past the end of the slice, as
// this is where the write pointer will end up at the end of a full
// transfer.
if (next_addr < sval) || (next_addr > eval) {
unreachable!("UART DMA reported invalid `write_addr`");
}
if (next_addr - sval) < min_count {
sbuffer = &mut buffer[(next_addr - sval)..];
continue;
}
let regs = self.info.regs;
let all_full = next_addr == eval;
// NOTE: This is off label usage of RSR! See the issue below for
// why I am not checking if there is an "extra" FIFO byte, and why
// I am checking RSR directly (it seems to report the status of the LAST
// POPPED value, rather than the NEXT TO POP value like the datasheet
// suggests!)
//
// issue: https://github.com/raspberrypi/pico-feedback/issues/367
let last_was_break = regs.uartrsr().read().be();
return match (all_full, last_was_break) {
(true, true) | (false, _) => {
// We got less than the full amount + a break, or the full amount
// and the last byte was a break. Subtract the break off by adding one to sval.
Ok(next_addr.saturating_sub(1 + sval))
}
(true, false) => {
// We finished the whole DMA, and the last DMA'd byte was NOT a break
// character. This is an error.
//
// NOTE: we COULD potentially return Ok(buffer.len()) here, since we
// know a line break occured at SOME POINT after the DMA completed.
//
// However, we have no way of knowing if there was extra data BEFORE
// that line break, so instead return an Err to signal to the caller
// that there are "leftovers", and they'll catch the actual line break
// on the next call.
//
// Doing it like this also avoids racyness: now whether you finished
// the full read BEFORE the line break occurred or AFTER the line break
// occurs, you still get `MissingBreak(buffer.len())` instead of sometimes
// getting `Ok(buffer.len())` if you were "late enough" to observe the
// line break.
Err(ReadToBreakError::MissingBreak(buffer.len()))
}
};
} else if errors.oeris() {
return Err(ReadToBreakError::Other(Error::Overrun));
} else if errors.peris() {
return Err(ReadToBreakError::Other(Error::Parity));
} else if errors.feris() {
return Err(ReadToBreakError::Other(Error::Framing));
}
unreachable!("unrecognized rx error");
}
}
}
impl<'d> Uart<'d, Blocking> {
/// Create a new UART without hardware flow control
pub fn new_blocking<T: Instance>(
uart: Peri<'d, T>,
tx: Peri<'d, impl TxPin<T>>,
rx: Peri<'d, impl RxPin<T>>,
config: Config,
) -> Self {
Self::new_inner(uart, tx.into(), rx.into(), None, None, false, None, None, config)
}
/// Create a new UART with hardware flow control (RTS/CTS)
pub fn new_with_rtscts_blocking<T: Instance>(
uart: Peri<'d, T>,
tx: Peri<'d, impl TxPin<T>>,
rx: Peri<'d, impl RxPin<T>>,
rts: Peri<'d, impl RtsPin<T>>,
cts: Peri<'d, impl CtsPin<T>>,
config: Config,
) -> Self {
Self::new_inner(
uart,
tx.into(),
rx.into(),
Some(rts.into()),
Some(cts.into()),
false,
None,
None,
config,
)
}
/// Convert this uart instance into a buffered uart using the provided
/// irq, transmit and receive buffers.
pub fn into_buffered<T: Instance>(
self,
_irq: impl Binding<T::Interrupt, BufferedInterruptHandler<T>>,
tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8],
) -> BufferedUart {
buffered::init_buffers(T::info(), T::buffered_state(), Some(tx_buffer), Some(rx_buffer));
BufferedUart {
rx: BufferedUartRx {
info: T::info(),
state: T::buffered_state(),
},
tx: BufferedUartTx {
info: T::info(),
state: T::buffered_state(),
},
}
}
}
impl<'d> Uart<'d, Async> {
/// Create a new DMA enabled UART without hardware flow control
pub fn new<T: Instance>(
uart: Peri<'d, T>,
tx: Peri<'d, impl TxPin<T>>,
rx: Peri<'d, impl RxPin<T>>,
_irq: impl Binding<T::Interrupt, InterruptHandler<T>>,
tx_dma: Peri<'d, impl Channel>,
rx_dma: Peri<'d, impl Channel>,
config: Config,
) -> Self {
Self::new_inner(
uart,
tx.into(),
rx.into(),
None,
None,
true,
Some(tx_dma.into()),
Some(rx_dma.into()),
config,
)
}
/// Create a new DMA enabled UART with hardware flow control (RTS/CTS)
pub fn new_with_rtscts<T: Instance>(
uart: Peri<'d, T>,
tx: Peri<'d, impl TxPin<T>>,
rx: Peri<'d, impl RxPin<T>>,
rts: Peri<'d, impl RtsPin<T>>,
cts: Peri<'d, impl CtsPin<T>>,
_irq: impl Binding<T::Interrupt, InterruptHandler<T>>,
tx_dma: Peri<'d, impl Channel>,
rx_dma: Peri<'d, impl Channel>,
config: Config,
) -> Self {
Self::new_inner(
uart,
tx.into(),
rx.into(),
Some(rts.into()),
Some(cts.into()),
true,
Some(tx_dma.into()),
Some(rx_dma.into()),
config,
)
}
}
impl<'d, M: Mode> Uart<'d, M> {
fn new_inner<T: Instance>(
_uart: Peri<'d, T>,
mut tx: Peri<'d, AnyPin>,
mut rx: Peri<'d, AnyPin>,
mut rts: Option<Peri<'d, AnyPin>>,
mut cts: Option<Peri<'d, AnyPin>>,
has_irq: bool,
tx_dma: Option<Peri<'d, AnyChannel>>,
rx_dma: Option<Peri<'d, AnyChannel>>,
config: Config,
) -> Self {
Self::init(
T::info(),
Some(tx.reborrow()),
Some(rx.reborrow()),
rts.as_mut().map(|x| x.reborrow()),
cts.as_mut().map(|x| x.reborrow()),
config,
);
Self {
tx: UartTx::new_inner(T::info(), tx_dma),
rx: UartRx::new_inner(T::info(), T::dma_state(), has_irq, rx_dma),
}
}
fn init(
info: &Info,
tx: Option<Peri<'_, AnyPin>>,
rx: Option<Peri<'_, AnyPin>>,
rts: Option<Peri<'_, AnyPin>>,
cts: Option<Peri<'_, AnyPin>>,
config: Config,
) {
let r = info.regs;
if let Some(pin) = &tx {
let funcsel = {
let pin_number = ((pin.gpio().as_ptr() as u32) & 0x1FF) / 8;
if (pin_number % 4) == 0 {
2
} else {
11
}
};
pin.gpio().ctrl().write(|w| {
w.set_funcsel(funcsel);
w.set_outover(if config.invert_tx {
Outover::INVERT
} else {
Outover::NORMAL
});
});
pin.pad_ctrl().write(|w| {
#[cfg(feature = "_rp235x")]
w.set_iso(false);
w.set_ie(true);
});
}
if let Some(pin) = &rx {
let funcsel = {
let pin_number = ((pin.gpio().as_ptr() as u32) & 0x1FF) / 8;
if ((pin_number - 1) % 4) == 0 {
2
} else {
11
}
};
pin.gpio().ctrl().write(|w| {
w.set_funcsel(funcsel);
w.set_inover(if config.invert_rx {
Inover::INVERT
} else {
Inover::NORMAL
});
});
pin.pad_ctrl().write(|w| {
#[cfg(feature = "_rp235x")]
w.set_iso(false);
w.set_ie(true);
});
}
if let Some(pin) = &cts {
pin.gpio().ctrl().write(|w| {
w.set_funcsel(2);
w.set_inover(if config.invert_cts {
Inover::INVERT
} else {
Inover::NORMAL
});
});
pin.pad_ctrl().write(|w| {
#[cfg(feature = "_rp235x")]
w.set_iso(false);
w.set_ie(true);
});
}
if let Some(pin) = &rts {
pin.gpio().ctrl().write(|w| {
w.set_funcsel(2);
w.set_outover(if config.invert_rts {
Outover::INVERT
} else {
Outover::NORMAL
});
});
pin.pad_ctrl().write(|w| {
#[cfg(feature = "_rp235x")]
w.set_iso(false);
w.set_ie(true);
});
}
Self::set_baudrate_inner(info, config.baudrate);
let (pen, eps) = match config.parity {
Parity::ParityNone => (false, false),
Parity::ParityOdd => (true, false),
Parity::ParityEven => (true, true),
};
r.uartlcr_h().write(|w| {
w.set_wlen(config.data_bits.bits());
w.set_stp2(config.stop_bits == StopBits::STOP2);
w.set_pen(pen);
w.set_eps(eps);
w.set_fen(true);
});
r.uartifls().write(|w| {
w.set_rxiflsel(0b100);
w.set_txiflsel(0b000);
});
r.uartcr().write(|w| {
w.set_uarten(true);
w.set_rxe(true);
w.set_txe(true);
w.set_ctsen(cts.is_some());
w.set_rtsen(rts.is_some());
});
}
fn lcr_modify<R>(info: &Info, f: impl FnOnce(&mut crate::pac::uart::regs::UartlcrH) -> R) -> R {
let r = info.regs;
// Notes from PL011 reference manual:
//
// - Before writing the LCR, if the UART is enabled it needs to be
// disabled and any current TX + RX activity has to be completed
//
// - There is a BUSY flag which waits for the current TX char, but this is
// OR'd with TX FIFO !FULL, so not usable when FIFOs are enabled and
// potentially nonempty
//
// - FIFOs can't be set to disabled whilst a character is in progress
// (else "FIFO integrity is not guaranteed")
//
// Combination of these means there is no general way to halt and poll for
// end of TX character, if FIFOs may be enabled. Either way, there is no
// way to poll for end of RX character.
//
// So, insert a 15 Baud period delay before changing the settings.
// 15 Baud is comfortably higher than start + max data + parity + stop.
// Anything else would require API changes to permit a non-enabled UART
// state after init() where settings can be changed safely.
let clk_base = crate::clocks::clk_peri_freq();
let cr = r.uartcr().read();
if cr.uarten() {
r.uartcr().modify(|w| {
w.set_uarten(false);
w.set_txe(false);
w.set_rxe(false);
});
// Note: Maximise precision here. Show working, the compiler will mop this up.
// Create a 16.6 fixed-point fractional division ratio; then scale to 32-bits.
let mut brdiv_ratio = 64 * r.uartibrd().read().0 + r.uartfbrd().read().0;
brdiv_ratio <<= 10;
// 3662 is ~(15 * 244.14) where 244.14 is 16e6 / 2^16
let scaled_freq = clk_base / 3662;
let wait_time_us = brdiv_ratio / scaled_freq;
embedded_hal_1::delay::DelayNs::delay_us(&mut Delay, wait_time_us);
}
let res = r.uartlcr_h().modify(f);
r.uartcr().write_value(cr);
res
}
/// sets baudrate on runtime
pub fn set_baudrate(&mut self, baudrate: u32) {
Self::set_baudrate_inner(self.tx.info, baudrate);
}
fn set_baudrate_inner(info: &Info, baudrate: u32) {
let r = info.regs;
let clk_base = crate::clocks::clk_peri_freq();
let baud_rate_div = (8 * clk_base) / baudrate;
let mut baud_ibrd = baud_rate_div >> 7;
let mut baud_fbrd = ((baud_rate_div & 0x7f) + 1) / 2;
if baud_ibrd == 0 {
baud_ibrd = 1;
baud_fbrd = 0;
} else if baud_ibrd >= 65535 {
baud_ibrd = 65535;
baud_fbrd = 0;
}
// Load PL011's baud divisor registers
r.uartibrd().write_value(pac::uart::regs::Uartibrd(baud_ibrd));
r.uartfbrd().write_value(pac::uart::regs::Uartfbrd(baud_fbrd));
Self::lcr_modify(info, |_| {});
}
}
impl<'d, M: Mode> Uart<'d, M> {
/// Transmit the provided buffer blocking execution until done.
pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> {
self.tx.blocking_write(buffer)
}
/// Flush UART TX blocking execution until done.
pub fn blocking_flush(&mut self) -> Result<(), Error> {
self.tx.blocking_flush()
}
/// Read from UART RX blocking execution until done.
pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
self.rx.blocking_read(buffer)
}
/// Check if UART is busy transmitting.
pub fn busy(&self) -> bool {
self.tx.busy()
}
/// Wait until TX is empty and send break condition.
pub async fn send_break(&mut self, bits: u32) {
self.tx.send_break(bits).await
}
/// Split the Uart into a transmitter and receiver, which is particularly
/// useful when having two tasks correlating to transmitting and receiving.
pub fn split(self) -> (UartTx<'d, M>, UartRx<'d, M>) {
(self.tx, self.rx)
}
/// Split the Uart into a transmitter and receiver by mutable reference,
/// which is particularly useful when having two tasks correlating to
/// transmitting and receiving.
pub fn split_ref(&mut self) -> (&mut UartTx<'d, M>, &mut UartRx<'d, M>) {
(&mut self.tx, &mut self.rx)
}
}
impl<'d> Uart<'d, Async> {
/// Write to UART TX from the provided buffer.
pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> {
self.tx.write(buffer).await
}
/// Read from UART RX into the provided buffer.
pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
self.rx.read(buffer).await
}
/// Read until the buffer is full or a line break occurs.
///
/// See [`UartRx::read_to_break()`] for more details
pub async fn read_to_break<'a>(&mut self, buf: &'a mut [u8]) -> Result<usize, ReadToBreakError> {
self.rx.read_to_break(buf).await
}
/// Read until the buffer is full or a line break occurs after at least `min_count` bytes have been read.
///
/// See [`UartRx::read_to_break_with_count()`] for more details
pub async fn read_to_break_with_count<'a>(
&mut self,
buf: &'a mut [u8],
min_count: usize,
) -> Result<usize, ReadToBreakError> {
self.rx.read_to_break_with_count(buf, min_count).await
}
}
impl<'d, M: Mode> embedded_hal_02::serial::Read<u8> for UartRx<'d, M> {
type Error = Error;
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
let r = self.info.regs;
if r.uartfr().read().rxfe() {
return Err(nb::Error::WouldBlock);
}
let dr = r.uartdr().read();
if dr.oe() {
Err(nb::Error::Other(Error::Overrun))
} else if dr.be() {
Err(nb::Error::Other(Error::Break))
} else if dr.pe() {
Err(nb::Error::Other(Error::Parity))
} else if dr.fe() {
Err(nb::Error::Other(Error::Framing))
} else {
Ok(dr.data())
}
}
}
impl<'d, M: Mode> embedded_hal_02::serial::Write<u8> for UartTx<'d, M> {
type Error = Error;
fn write(&mut self, word: u8) -> Result<(), nb::Error<Self::Error>> {
let r = self.info.regs;
if r.uartfr().read().txff() {
return Err(nb::Error::WouldBlock);
}
r.uartdr().write(|w| w.set_data(word));
Ok(())
}
fn flush(&mut self) -> Result<(), nb::Error<Self::Error>> {
let r = self.info.regs;
if !r.uartfr().read().txfe() {
return Err(nb::Error::WouldBlock);
}
Ok(())
}
}
impl<'d, M: Mode> embedded_hal_02::blocking::serial::Write<u8> for UartTx<'d, M> {
type Error = Error;
fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer)
}
fn bflush(&mut self) -> Result<(), Self::Error> {
self.blocking_flush()
}
}
impl<'d, M: Mode> embedded_hal_02::serial::Read<u8> for Uart<'d, M> {
type Error = Error;
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
embedded_hal_02::serial::Read::read(&mut self.rx)
}
}
impl<'d, M: Mode> embedded_hal_02::serial::Write<u8> for Uart<'d, M> {
type Error = Error;
fn write(&mut self, word: u8) -> Result<(), nb::Error<Self::Error>> {
embedded_hal_02::serial::Write::write(&mut self.tx, word)
}
fn flush(&mut self) -> Result<(), nb::Error<Self::Error>> {
embedded_hal_02::serial::Write::flush(&mut self.tx)
}
}
impl<'d, M: Mode> embedded_hal_02::blocking::serial::Write<u8> for Uart<'d, M> {
type Error = Error;
fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer)
}
fn bflush(&mut self) -> Result<(), Self::Error> {
self.blocking_flush()
}
}
impl embedded_hal_nb::serial::Error for Error {
fn kind(&self) -> embedded_hal_nb::serial::ErrorKind {
match *self {
Self::Framing => embedded_hal_nb::serial::ErrorKind::FrameFormat,
Self::Break => embedded_hal_nb::serial::ErrorKind::Other,
Self::Overrun => embedded_hal_nb::serial::ErrorKind::Overrun,
Self::Parity => embedded_hal_nb::serial::ErrorKind::Parity,
}
}
}
impl<'d, M: Mode> embedded_hal_nb::serial::ErrorType for UartRx<'d, M> {
type Error = Error;
}
impl<'d, M: Mode> embedded_hal_nb::serial::ErrorType for UartTx<'d, M> {
type Error = Error;
}
impl<'d, M: Mode> embedded_hal_nb::serial::ErrorType for Uart<'d, M> {
type Error = Error;
}
impl<'d, M: Mode> embedded_hal_nb::serial::Read for UartRx<'d, M> {
fn read(&mut self) -> nb::Result<u8, Self::Error> {
let r = self.info.regs;
if r.uartfr().read().rxfe() {
return Err(nb::Error::WouldBlock);
}
let dr = r.uartdr().read();
if dr.oe() {
Err(nb::Error::Other(Error::Overrun))
} else if dr.be() {
Err(nb::Error::Other(Error::Break))
} else if dr.pe() {
Err(nb::Error::Other(Error::Parity))
} else if dr.fe() {
Err(nb::Error::Other(Error::Framing))
} else {
Ok(dr.data())
}
}
}
impl<'d, M: Mode> embedded_hal_nb::serial::Write for UartTx<'d, M> {
fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> {
self.blocking_write(&[char]).map_err(nb::Error::Other)
}
fn flush(&mut self) -> nb::Result<(), Self::Error> {
self.blocking_flush().map_err(nb::Error::Other)
}
}
impl<'d> embedded_io::ErrorType for UartTx<'d, Blocking> {
type Error = Error;
}
impl<'d> embedded_io::Write for UartTx<'d, Blocking> {
fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
self.blocking_write(buf).map(|_| buf.len())
}
fn flush(&mut self) -> Result<(), Self::Error> {
self.blocking_flush()
}
}
impl<'d, M: Mode> embedded_hal_nb::serial::Read for Uart<'d, M> {
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
embedded_hal_02::serial::Read::read(&mut self.rx)
}
}
impl<'d, M: Mode> embedded_hal_nb::serial::Write for Uart<'d, M> {
fn write(&mut self, char: u8) -> nb::Result<(), Self::Error> {
self.blocking_write(&[char]).map_err(nb::Error::Other)
}
fn flush(&mut self) -> nb::Result<(), Self::Error> {
self.blocking_flush().map_err(nb::Error::Other)
}
}
impl<'d> embedded_io::ErrorType for Uart<'d, Blocking> {
type Error = Error;
}
impl<'d> embedded_io::Write for Uart<'d, Blocking> {
fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
self.blocking_write(buf).map(|_| buf.len())
}
fn flush(&mut self) -> Result<(), Self::Error> {
self.blocking_flush()
}
}
struct Info {
regs: pac::uart::Uart,
tx_dreq: pac::dma::vals::TreqSel,
rx_dreq: pac::dma::vals::TreqSel,
interrupt: Interrupt,
}
trait SealedMode {}
trait SealedInstance {
fn info() -> &'static Info;
fn buffered_state() -> &'static buffered::State;
fn dma_state() -> &'static DmaState;
}
/// UART mode.
#[allow(private_bounds)]
pub trait Mode: SealedMode {}
macro_rules! impl_mode {
($name:ident) => {
impl SealedMode for $name {}
impl Mode for $name {}
};
}
/// Blocking mode.
pub struct Blocking;
/// Async mode.
pub struct Async;
impl_mode!(Blocking);
impl_mode!(Async);
/// UART instance.
#[allow(private_bounds)]
pub trait Instance: SealedInstance + PeripheralType {
/// Interrupt for this instance.
type Interrupt: interrupt::typelevel::Interrupt;
}
macro_rules! impl_instance {
($inst:ident, $irq:ident, $tx_dreq:expr, $rx_dreq:expr) => {
impl SealedInstance for peripherals::$inst {
fn info() -> &'static Info {
static INFO: Info = Info {
regs: pac::$inst,
tx_dreq: $tx_dreq,
rx_dreq: $rx_dreq,
interrupt: crate::interrupt::typelevel::$irq::IRQ,
};
&INFO
}
fn buffered_state() -> &'static buffered::State {
static STATE: buffered::State = buffered::State::new();
&STATE
}
fn dma_state() -> &'static DmaState {
static STATE: DmaState = DmaState {
rx_err_waker: AtomicWaker::new(),
rx_errs: AtomicU16::new(0),
};
&STATE
}
}
impl Instance for peripherals::$inst {
type Interrupt = crate::interrupt::typelevel::$irq;
}
};
}
impl_instance!(
UART0,
UART0_IRQ,
pac::dma::vals::TreqSel::UART0_TX,
pac::dma::vals::TreqSel::UART0_RX
);
impl_instance!(
UART1,
UART1_IRQ,
pac::dma::vals::TreqSel::UART1_TX,
pac::dma::vals::TreqSel::UART1_RX
);
/// Trait for TX pins.
pub trait TxPin<T: Instance>: crate::gpio::Pin {}
/// Trait for RX pins.
pub trait RxPin<T: Instance>: crate::gpio::Pin {}
/// Trait for Clear To Send (CTS) pins.
pub trait CtsPin<T: Instance>: crate::gpio::Pin {}
/// Trait for Request To Send (RTS) pins.
pub trait RtsPin<T: Instance>: crate::gpio::Pin {}
macro_rules! impl_pin {
($pin:ident, $instance:ident, $function:ident) => {
impl $function<peripherals::$instance> for peripherals::$pin {}
};
}
impl_pin!(PIN_0, UART0, TxPin);
impl_pin!(PIN_1, UART0, RxPin);
impl_pin!(PIN_2, UART0, CtsPin);
impl_pin!(PIN_3, UART0, RtsPin);
impl_pin!(PIN_4, UART1, TxPin);
impl_pin!(PIN_5, UART1, RxPin);
impl_pin!(PIN_6, UART1, CtsPin);
impl_pin!(PIN_7, UART1, RtsPin);
impl_pin!(PIN_8, UART1, TxPin);
impl_pin!(PIN_9, UART1, RxPin);
impl_pin!(PIN_10, UART1, CtsPin);
impl_pin!(PIN_11, UART1, RtsPin);
impl_pin!(PIN_12, UART0, TxPin);
impl_pin!(PIN_13, UART0, RxPin);
impl_pin!(PIN_14, UART0, CtsPin);
impl_pin!(PIN_15, UART0, RtsPin);
impl_pin!(PIN_16, UART0, TxPin);
impl_pin!(PIN_17, UART0, RxPin);
impl_pin!(PIN_18, UART0, CtsPin);
impl_pin!(PIN_19, UART0, RtsPin);
impl_pin!(PIN_20, UART1, TxPin);
impl_pin!(PIN_21, UART1, RxPin);
impl_pin!(PIN_22, UART1, CtsPin);
impl_pin!(PIN_23, UART1, RtsPin);
impl_pin!(PIN_24, UART1, TxPin);
impl_pin!(PIN_25, UART1, RxPin);
impl_pin!(PIN_26, UART1, CtsPin);
impl_pin!(PIN_27, UART1, RtsPin);
impl_pin!(PIN_28, UART0, TxPin);
impl_pin!(PIN_29, UART0, RxPin);
// Additional functions added by all 2350s
#[cfg(feature = "_rp235x")]
impl_pin!(PIN_2, UART0, TxPin);
#[cfg(feature = "_rp235x")]
impl_pin!(PIN_3, UART0, RxPin);
#[cfg(feature = "_rp235x")]
impl_pin!(PIN_6, UART1, TxPin);
#[cfg(feature = "_rp235x")]
impl_pin!(PIN_7, UART1, RxPin);
#[cfg(feature = "_rp235x")]
impl_pin!(PIN_10, UART1, TxPin);
#[cfg(feature = "_rp235x")]
impl_pin!(PIN_11, UART1, RxPin);
#[cfg(feature = "_rp235x")]
impl_pin!(PIN_14, UART0, TxPin);
#[cfg(feature = "_rp235x")]
impl_pin!(PIN_15, UART0, RxPin);
#[cfg(feature = "_rp235x")]
impl_pin!(PIN_18, UART0, TxPin);
#[cfg(feature = "_rp235x")]
impl_pin!(PIN_19, UART0, RxPin);
#[cfg(feature = "_rp235x")]
impl_pin!(PIN_22, UART1, TxPin);
#[cfg(feature = "_rp235x")]
impl_pin!(PIN_23, UART1, RxPin);
#[cfg(feature = "_rp235x")]
impl_pin!(PIN_26, UART1, TxPin);
#[cfg(feature = "_rp235x")]
impl_pin!(PIN_27, UART1, RxPin);
// Additional pins added by larger 2350 packages.
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_30, UART0, CtsPin);
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_31, UART0, RtsPin);
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_32, UART0, TxPin);
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_33, UART0, RxPin);
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_34, UART0, CtsPin);
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_35, UART0, RtsPin);
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_36, UART1, TxPin);
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_37, UART1, RxPin);
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_38, UART1, CtsPin);
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_39, UART1, RtsPin);
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_40, UART1, TxPin);
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_41, UART1, RxPin);
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_42, UART1, CtsPin);
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_43, UART1, RtsPin);
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_44, UART0, TxPin);
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_45, UART0, RxPin);
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_46, UART0, CtsPin);
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_47, UART0, RtsPin);
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_30, UART0, TxPin);
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_31, UART0, RxPin);
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_34, UART0, TxPin);
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_35, UART0, RxPin);
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_38, UART1, TxPin);
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_39, UART1, RxPin);
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_42, UART1, TxPin);
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_43, UART1, RxPin);
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_46, UART0, TxPin);
#[cfg(feature = "rp235xb")]
impl_pin!(PIN_47, UART0, RxPin);