2025-03-27 15:18:06 +01:00

468 lines
13 KiB
Rust

//! Pulse Density Modulation (PDM) microphone driver
#![macro_use]
use core::future::poll_fn;
use core::marker::PhantomData;
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::Poll;
use embassy_hal_internal::drop::OnDrop;
use embassy_hal_internal::{Peri, PeripheralType};
use embassy_sync::waitqueue::AtomicWaker;
use fixed::types::I7F1;
use crate::chip::EASY_DMA_SIZE;
use crate::gpio::{AnyPin, Pin as GpioPin, SealedPin, DISCONNECTED};
use crate::interrupt::typelevel::Interrupt;
use crate::pac::gpio::vals as gpiovals;
use crate::pac::pdm::vals;
pub use crate::pac::pdm::vals::Freq as Frequency;
#[cfg(any(
feature = "nrf52840",
feature = "nrf52833",
feature = "_nrf5340-app",
feature = "_nrf91",
))]
pub use crate::pac::pdm::vals::Ratio;
use crate::{interrupt, pac};
/// Interrupt handler
pub struct InterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
unsafe fn on_interrupt() {
let r = T::regs();
if r.events_end().read() != 0 {
r.intenclr().write(|w| w.set_end(true));
}
if r.events_started().read() != 0 {
r.intenclr().write(|w| w.set_started(true));
}
if r.events_stopped().read() != 0 {
r.intenclr().write(|w| w.set_stopped(true));
}
T::state().waker.wake();
}
}
/// PDM microphone interface
pub struct Pdm<'d, T: Instance> {
_peri: Peri<'d, T>,
}
/// PDM error
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {
/// Buffer is too long
BufferTooLong,
/// Buffer is empty
BufferZeroLength,
/// PDM is not running
NotRunning,
/// PDM is already running
AlreadyRunning,
}
static DUMMY_BUFFER: [i16; 1] = [0; 1];
/// The state of a continuously running sampler. While it reflects
/// the progress of a sampler, it also signals what should be done
/// next. For example, if the sampler has stopped then the PDM implementation
/// can then tear down its infrastructure
#[derive(PartialEq)]
pub enum SamplerState {
/// The sampler processed the samples and is ready for more
Sampled,
/// The sampler is done processing samples
Stopped,
}
impl<'d, T: Instance> Pdm<'d, T> {
/// Create PDM driver
pub fn new(
pdm: Peri<'d, T>,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
clk: Peri<'d, impl GpioPin>,
din: Peri<'d, impl GpioPin>,
config: Config,
) -> Self {
Self::new_inner(pdm, clk.into(), din.into(), config)
}
fn new_inner(pdm: Peri<'d, T>, clk: Peri<'d, AnyPin>, din: Peri<'d, AnyPin>, config: Config) -> Self {
let r = T::regs();
// setup gpio pins
din.conf().write(|w| w.set_input(gpiovals::Input::CONNECT));
r.psel().din().write_value(din.psel_bits());
clk.set_low();
clk.conf().write(|w| w.set_dir(gpiovals::Dir::OUTPUT));
r.psel().clk().write_value(clk.psel_bits());
// configure
r.pdmclkctrl().write(|w| w.set_freq(config.frequency));
#[cfg(any(
feature = "nrf52840",
feature = "nrf52833",
feature = "_nrf5340-app",
feature = "_nrf91",
))]
r.ratio().write(|w| w.set_ratio(config.ratio));
r.mode().write(|w| {
w.set_operation(config.operation_mode.into());
w.set_edge(config.edge.into());
});
Self::_set_gain(r, config.gain_left, config.gain_right);
// Disable all events interrupts
r.intenclr().write(|w| w.0 = 0x003F_FFFF);
// IRQ
T::Interrupt::unpend();
unsafe { T::Interrupt::enable() };
r.enable().write(|w| w.set_enable(true));
Self { _peri: pdm }
}
fn _set_gain(r: pac::pdm::Pdm, gain_left: I7F1, gain_right: I7F1) {
let gain_to_bits = |gain: I7F1| -> vals::Gain {
let gain: i8 = gain.saturating_add(I7F1::from_bits(0x28)).to_bits().clamp(0, 0x50);
vals::Gain::from_bits(gain as u8)
};
r.gainl().write(|w| w.set_gainl(gain_to_bits(gain_left)));
r.gainr().write(|w| w.set_gainr(gain_to_bits(gain_right)));
}
/// Adjust the gain of the PDM microphone on the fly
pub fn set_gain(&mut self, gain_left: I7F1, gain_right: I7F1) {
Self::_set_gain(T::regs(), gain_left, gain_right)
}
/// Start sampling microphone data into a dummy buffer.
/// Useful to start the microphone and keep it active between recording samples.
pub async fn start(&mut self) {
let r = T::regs();
// start dummy sampling because microphone needs some setup time
r.sample().ptr().write_value(DUMMY_BUFFER.as_ptr() as u32);
r.sample().maxcnt().write(|w| w.set_buffsize(DUMMY_BUFFER.len() as _));
r.tasks_start().write_value(1);
}
/// Stop sampling microphone data inta a dummy buffer
pub async fn stop(&mut self) {
let r = T::regs();
r.tasks_stop().write_value(1);
r.events_started().write_value(0);
}
/// Sample data into the given buffer
pub async fn sample(&mut self, buffer: &mut [i16]) -> Result<(), Error> {
if buffer.is_empty() {
return Err(Error::BufferZeroLength);
}
if buffer.len() > EASY_DMA_SIZE {
return Err(Error::BufferTooLong);
}
let r = T::regs();
if r.events_started().read() == 0 {
return Err(Error::NotRunning);
}
let drop = OnDrop::new(move || {
r.intenclr().write(|w| w.set_end(true));
r.events_stopped().write_value(0);
// reset to dummy buffer
r.sample().ptr().write_value(DUMMY_BUFFER.as_ptr() as u32);
r.sample().maxcnt().write(|w| w.set_buffsize(DUMMY_BUFFER.len() as _));
while r.events_stopped().read() == 0 {}
});
// setup user buffer
let ptr = buffer.as_ptr();
let len = buffer.len();
r.sample().ptr().write_value(ptr as u32);
r.sample().maxcnt().write(|w| w.set_buffsize(len as _));
// wait till the current sample is finished and the user buffer sample is started
Self::wait_for_sample().await;
// reset the buffer back to the dummy buffer
r.sample().ptr().write_value(DUMMY_BUFFER.as_ptr() as u32);
r.sample().maxcnt().write(|w| w.set_buffsize(DUMMY_BUFFER.len() as _));
// wait till the user buffer is sampled
Self::wait_for_sample().await;
drop.defuse();
Ok(())
}
async fn wait_for_sample() {
let r = T::regs();
r.events_end().write_value(0);
r.intenset().write(|w| w.set_end(true));
compiler_fence(Ordering::SeqCst);
poll_fn(|cx| {
T::state().waker.register(cx.waker());
if r.events_end().read() != 0 {
return Poll::Ready(());
}
Poll::Pending
})
.await;
compiler_fence(Ordering::SeqCst);
}
/// Continuous sampling with double buffers.
///
/// A sampler closure is provided that receives the buffer of samples, noting
/// that the size of this buffer can be less than the original buffer's size.
/// A command is return from the closure that indicates whether the sampling
/// should continue or stop.
///
/// NOTE: The time spent within the callback supplied should not exceed the time
/// taken to acquire the samples into a single buffer. You should measure the
/// time taken by the callback and set the sample buffer size accordingly.
/// Exceeding this time can lead to samples becoming dropped.
pub async fn run_task_sampler<S, const N: usize>(
&mut self,
bufs: &mut [[i16; N]; 2],
mut sampler: S,
) -> Result<(), Error>
where
S: FnMut(&[i16; N]) -> SamplerState,
{
let r = T::regs();
if r.events_started().read() != 0 {
return Err(Error::AlreadyRunning);
}
r.sample().ptr().write_value(bufs[0].as_mut_ptr() as u32);
r.sample().maxcnt().write(|w| w.set_buffsize(N as _));
// Reset and enable the events
r.events_end().write_value(0);
r.events_started().write_value(0);
r.events_stopped().write_value(0);
r.intenset().write(|w| {
w.set_end(true);
w.set_started(true);
w.set_stopped(true);
});
// Don't reorder the start event before the previous writes. Hopefully self
// wouldn't happen anyway
compiler_fence(Ordering::SeqCst);
r.tasks_start().write_value(1);
let mut current_buffer = 0;
let mut done = false;
let drop = OnDrop::new(|| {
r.tasks_stop().write_value(1);
// N.B. It would be better if this were async, but Drop only support sync code
while r.events_stopped().read() != 0 {}
});
// Wait for events and complete when the sampler indicates it has had enough
poll_fn(|cx| {
let r = T::regs();
T::state().waker.register(cx.waker());
if r.events_end().read() != 0 {
compiler_fence(Ordering::SeqCst);
r.events_end().write_value(0);
r.intenset().write(|w| w.set_end(true));
if !done {
// Discard the last buffer after the user requested a stop
if sampler(&bufs[current_buffer]) == SamplerState::Sampled {
let next_buffer = 1 - current_buffer;
current_buffer = next_buffer;
} else {
r.tasks_stop().write_value(1);
done = true;
};
};
}
if r.events_started().read() != 0 {
r.events_started().write_value(0);
r.intenset().write(|w| w.set_started(true));
let next_buffer = 1 - current_buffer;
r.sample().ptr().write_value(bufs[next_buffer].as_mut_ptr() as u32);
}
if r.events_stopped().read() != 0 {
return Poll::Ready(());
}
Poll::Pending
})
.await;
drop.defuse();
Ok(())
}
}
/// PDM microphone driver Config
pub struct Config {
/// Use stero or mono operation
pub operation_mode: OperationMode,
/// On which edge the left channel should be samples
pub edge: Edge,
/// Clock frequency
pub frequency: Frequency,
/// Clock ratio
#[cfg(any(
feature = "nrf52840",
feature = "nrf52833",
feature = "_nrf5340-app",
feature = "_nrf91",
))]
pub ratio: Ratio,
/// Gain left in dB
pub gain_left: I7F1,
/// Gain right in dB
pub gain_right: I7F1,
}
impl Default for Config {
fn default() -> Self {
Self {
operation_mode: OperationMode::Mono,
edge: Edge::LeftFalling,
frequency: Frequency::DEFAULT,
#[cfg(any(
feature = "nrf52840",
feature = "nrf52833",
feature = "_nrf5340-app",
feature = "_nrf91",
))]
ratio: Ratio::RATIO80,
gain_left: I7F1::ZERO,
gain_right: I7F1::ZERO,
}
}
}
/// PDM operation mode
#[derive(PartialEq)]
pub enum OperationMode {
/// Mono (1 channel)
Mono,
/// Stereo (2 channels)
Stereo,
}
impl From<OperationMode> for vals::Operation {
fn from(mode: OperationMode) -> Self {
match mode {
OperationMode::Mono => vals::Operation::MONO,
OperationMode::Stereo => vals::Operation::STEREO,
}
}
}
/// PDM edge polarity
#[derive(PartialEq)]
pub enum Edge {
/// Left edge is rising
LeftRising,
/// Left edge is falling
LeftFalling,
}
impl From<Edge> for vals::Edge {
fn from(edge: Edge) -> Self {
match edge {
Edge::LeftRising => vals::Edge::LEFT_RISING,
Edge::LeftFalling => vals::Edge::LEFT_FALLING,
}
}
}
impl<'d, T: Instance> Drop for Pdm<'d, T> {
fn drop(&mut self) {
let r = T::regs();
r.tasks_stop().write_value(1);
r.enable().write(|w| w.set_enable(false));
r.psel().din().write_value(DISCONNECTED);
r.psel().clk().write_value(DISCONNECTED);
}
}
/// Peripheral static state
pub(crate) struct State {
waker: AtomicWaker,
}
impl State {
pub(crate) const fn new() -> Self {
Self {
waker: AtomicWaker::new(),
}
}
}
pub(crate) trait SealedInstance {
fn regs() -> crate::pac::pdm::Pdm;
fn state() -> &'static State;
}
/// PDM peripheral instance
#[allow(private_bounds)]
pub trait Instance: SealedInstance + PeripheralType + 'static + Send {
/// Interrupt for this peripheral
type Interrupt: interrupt::typelevel::Interrupt;
}
macro_rules! impl_pdm {
($type:ident, $pac_type:ident, $irq:ident) => {
impl crate::pdm::SealedInstance for peripherals::$type {
fn regs() -> crate::pac::pdm::Pdm {
pac::$pac_type
}
fn state() -> &'static crate::pdm::State {
static STATE: crate::pdm::State = crate::pdm::State::new();
&STATE
}
}
impl crate::pdm::Instance for peripherals::$type {
type Interrupt = crate::interrupt::typelevel::$irq;
}
};
}