2024-02-08 17:24:27 -05:00

400 lines
12 KiB
Rust

//! Hash generator (HASH)
use core::cmp::min;
use core::future::poll_fn;
use core::marker::PhantomData;
use core::task::Poll;
use embassy_hal_internal::{into_ref, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
use stm32_metapac::hash::regs::*;
use crate::interrupt::typelevel::Interrupt;
use crate::peripherals::HASH;
use crate::rcc::sealed::RccPeripheral;
use crate::{interrupt, pac, peripherals, Peripheral};
#[cfg(hash_v1)]
const NUM_CONTEXT_REGS: usize = 51;
#[cfg(hash_v3)]
const NUM_CONTEXT_REGS: usize = 103;
#[cfg(hash_v4)]
const NUM_CONTEXT_REGS: usize = 54;
const HASH_BUFFER_LEN: usize = 132;
const DIGEST_BLOCK_SIZE: usize = 128;
const MAX_DIGEST_SIZE: usize = 128;
static HASH_WAKER: AtomicWaker = AtomicWaker::new();
/// HASH interrupt handler.
pub struct InterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
unsafe fn on_interrupt() {
let bits = T::regs().sr().read();
if bits.dinis() {
T::regs().imr().modify(|reg| reg.set_dinie(false));
HASH_WAKER.wake();
}
if bits.dcis() {
T::regs().imr().modify(|reg| reg.set_dcie(false));
HASH_WAKER.wake();
}
}
}
///Hash algorithm selection
#[derive(Clone, Copy, PartialEq)]
pub enum Algorithm {
/// SHA-1 Algorithm
SHA1 = 0,
#[cfg(any(hash_v1, hash_v4))]
/// MD5 Algorithm
MD5 = 1,
/// SHA-224 Algorithm
SHA224 = 2,
/// SHA-256 Algorithm
SHA256 = 3,
#[cfg(hash_v3)]
/// SHA-384 Algorithm
SHA384 = 12,
#[cfg(hash_v3)]
/// SHA-512/224 Algorithm
SHA512_224 = 13,
#[cfg(hash_v3)]
/// SHA-512/256 Algorithm
SHA512_256 = 14,
#[cfg(hash_v3)]
/// SHA-256 Algorithm
SHA512 = 15,
}
/// Input data width selection
#[repr(u8)]
#[derive(Clone, Copy)]
pub enum DataType {
///32-bit data, no data is swapped.
Width32 = 0,
///16-bit data, each half-word is swapped.
Width16 = 1,
///8-bit data, all bytes are swapped.
Width8 = 2,
///1-bit data, all bits are swapped.
Width1 = 3,
}
/// Stores the state of the HASH peripheral for suspending/resuming
/// digest calculation.
pub struct Context {
first_word_sent: bool,
buffer: [u8; HASH_BUFFER_LEN],
buflen: usize,
algo: Algorithm,
format: DataType,
imr: u32,
str: u32,
cr: u32,
csr: [u32; NUM_CONTEXT_REGS],
}
/// HASH driver.
pub struct Hash<'d, T: Instance> {
_peripheral: PeripheralRef<'d, T>,
}
impl<'d, T: Instance> Hash<'d, T> {
/// Instantiates, resets, and enables the HASH peripheral.
pub fn new(
peripheral: impl Peripheral<P = T> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
) -> Self {
HASH::enable_and_reset();
into_ref!(peripheral);
let instance = Self {
_peripheral: peripheral,
};
T::Interrupt::unpend();
unsafe { T::Interrupt::enable() };
instance
}
/// Starts computation of a new hash and returns the saved peripheral state.
pub async fn start(&mut self, algorithm: Algorithm, format: DataType) -> Context {
// Define a context for this new computation.
let mut ctx = Context {
first_word_sent: false,
buffer: [0; HASH_BUFFER_LEN],
buflen: 0,
algo: algorithm,
format: format,
imr: 0,
str: 0,
cr: 0,
csr: [0; NUM_CONTEXT_REGS],
};
// Set the data type in the peripheral.
T::regs().cr().modify(|w| w.set_datatype(ctx.format as u8));
// Select the algorithm.
#[cfg(hash_v1)]
if ctx.algo == Algorithm::MD5 {
T::regs().cr().modify(|w| w.set_algo(true));
}
#[cfg(hash_v2)]
{
// Select the algorithm.
let mut algo0 = false;
let mut algo1 = false;
if ctx.algo == Algorithm::MD5 || ctx.algo == Algorithm::SHA256 {
algo0 = true;
}
if ctx.algo == Algorithm::SHA224 || ctx.algo == Algorithm::SHA256 {
algo1 = true;
}
T::regs().cr().modify(|w| w.set_algo0(algo0));
T::regs().cr().modify(|w| w.set_algo1(algo1));
}
#[cfg(any(hash_v3, hash_v4))]
T::regs().cr().modify(|w| w.set_algo(ctx.algo as u8));
T::regs().cr().modify(|w| w.set_init(true));
// Store and return the state of the peripheral.
self.store_context(&mut ctx).await;
ctx
}
/// Restores the peripheral state using the given context,
/// then updates the state with the provided data.
/// Peripheral state is saved upon return.
pub async fn update(&mut self, ctx: &mut Context, input: &[u8]) {
let mut data_waiting = input.len() + ctx.buflen;
if data_waiting < DIGEST_BLOCK_SIZE || (data_waiting < ctx.buffer.len() && !ctx.first_word_sent) {
// There isn't enough data to digest a block, so append it to the buffer.
ctx.buffer[ctx.buflen..ctx.buflen + input.len()].copy_from_slice(input);
ctx.buflen += input.len();
return;
}
// Restore the peripheral state.
self.load_context(&ctx);
let mut ilen_remaining = input.len();
let mut input_start = 0;
// Handle first block.
if !ctx.first_word_sent {
let empty_len = ctx.buffer.len() - ctx.buflen;
let copy_len = min(empty_len, ilen_remaining);
// Fill the buffer.
if copy_len > 0 {
ctx.buffer[ctx.buflen..ctx.buflen + copy_len].copy_from_slice(&input[0..copy_len]);
ctx.buflen += copy_len;
ilen_remaining -= copy_len;
input_start += copy_len;
}
self.accumulate(ctx.buffer.as_slice());
data_waiting -= ctx.buflen;
ctx.buflen = 0;
ctx.first_word_sent = true;
}
if data_waiting < DIGEST_BLOCK_SIZE {
// There isn't enough data remaining to process another block, so store it.
ctx.buffer[0..ilen_remaining].copy_from_slice(&input[input_start..input_start + ilen_remaining]);
ctx.buflen += ilen_remaining;
} else {
// First ingest the data in the buffer.
let empty_len = DIGEST_BLOCK_SIZE - ctx.buflen;
if empty_len > 0 {
let copy_len = min(empty_len, ilen_remaining);
ctx.buffer[ctx.buflen..ctx.buflen + copy_len]
.copy_from_slice(&input[input_start..input_start + copy_len]);
ctx.buflen += copy_len;
ilen_remaining -= copy_len;
input_start += copy_len;
}
self.accumulate(&ctx.buffer[0..DIGEST_BLOCK_SIZE]);
ctx.buflen = 0;
// Move any extra data to the now-empty buffer.
let leftovers = ilen_remaining % 64;
if leftovers > 0 {
ctx.buffer[0..leftovers].copy_from_slice(&input[input.len() - leftovers..input.len()]);
ctx.buflen += leftovers;
ilen_remaining -= leftovers;
}
// Hash the remaining data.
self.accumulate(&input[input_start..input_start + ilen_remaining]);
}
// Save the peripheral context.
self.store_context(ctx).await;
}
/// Computes a digest for the given context. A slice of the provided digest buffer is returned.
/// The length of the returned slice is dependent on the digest length of the selected algorithm.
pub async fn finish<'a>(&mut self, mut ctx: Context, digest: &'a mut [u8; MAX_DIGEST_SIZE]) -> &'a [u8] {
// Restore the peripheral state.
self.load_context(&ctx);
// Hash the leftover bytes, if any.
self.accumulate(&ctx.buffer[0..ctx.buflen]);
ctx.buflen = 0;
//Start the digest calculation.
T::regs().str().write(|w| w.set_dcal(true));
// Wait for completion.
poll_fn(|cx| {
// Check if already done.
let bits = T::regs().sr().read();
if bits.dcis() {
return Poll::Ready(());
}
// Register waker, then enable interrupts.
HASH_WAKER.register(cx.waker());
T::regs().imr().modify(|reg| reg.set_dcie(true));
// Check for completion.
let bits = T::regs().sr().read();
if bits.dcis() {
Poll::Ready(())
} else {
Poll::Pending
}
})
.await;
// Return the digest.
let digest_words = match ctx.algo {
Algorithm::SHA1 => 5,
#[cfg(any(hash_v1, hash_v4))]
Algorithm::MD5 => 4,
Algorithm::SHA224 => 7,
Algorithm::SHA256 => 8,
#[cfg(hash_v3)]
Algorithm::SHA384 => 12,
#[cfg(hash_v3)]
Algorithm::SHA512_224 => 7,
#[cfg(hash_v3)]
Algorithm::SHA512_256 => 8,
#[cfg(hash_v3)]
Algorithm::SHA512 => 16,
};
let mut i = 0;
while i < digest_words {
let word = T::regs().hr(i).read();
digest[(i * 4)..((i * 4) + 4)].copy_from_slice(word.to_be_bytes().as_slice());
i += 1;
}
&digest[0..digest_words * 4]
}
/// Push data into the hash core.
fn accumulate(&mut self, input: &[u8]) {
// Set the number of valid bits.
let num_valid_bits: u8 = (8 * (input.len() % 4)) as u8;
T::regs().str().modify(|w| w.set_nblw(num_valid_bits));
let mut i = 0;
while i < input.len() {
let mut word: [u8; 4] = [0; 4];
let copy_idx = min(i + 4, input.len());
word[0..copy_idx - i].copy_from_slice(&input[i..copy_idx]);
T::regs().din().write_value(u32::from_ne_bytes(word));
i += 4;
}
}
/// Save the peripheral state to a context.
async fn store_context(&mut self, ctx: &mut Context) {
// Wait for interrupt.
poll_fn(|cx| {
// Check if already done.
let bits = T::regs().sr().read();
if bits.dinis() {
return Poll::Ready(());
}
// Register waker, then enable interrupts.
HASH_WAKER.register(cx.waker());
T::regs().imr().modify(|reg| reg.set_dinie(true));
// Check for completion.
let bits = T::regs().sr().read();
if bits.dinis() {
Poll::Ready(())
} else {
Poll::Pending
}
})
.await;
ctx.imr = T::regs().imr().read().0;
ctx.str = T::regs().str().read().0;
ctx.cr = T::regs().cr().read().0;
let mut i = 0;
while i < NUM_CONTEXT_REGS {
ctx.csr[i] = T::regs().csr(i).read();
i += 1;
}
}
/// Restore the peripheral state from a context.
fn load_context(&mut self, ctx: &Context) {
// Restore the peripheral state from the context.
T::regs().imr().write_value(Imr { 0: ctx.imr });
T::regs().str().write_value(Str { 0: ctx.str });
T::regs().cr().write_value(Cr { 0: ctx.cr });
T::regs().cr().modify(|w| w.set_init(true));
let mut i = 0;
while i < NUM_CONTEXT_REGS {
T::regs().csr(i).write_value(ctx.csr[i]);
i += 1;
}
}
}
pub(crate) mod sealed {
use super::*;
pub trait Instance {
fn regs() -> pac::hash::Hash;
}
}
/// HASH instance trait.
pub trait Instance: sealed::Instance + Peripheral<P = Self> + crate::rcc::RccPeripheral + 'static + Send {
/// Interrupt for this HASH instance.
type Interrupt: interrupt::typelevel::Interrupt;
}
foreach_interrupt!(
($inst:ident, hash, HASH, GLOBAL, $irq:ident) => {
impl Instance for peripherals::$inst {
type Interrupt = crate::interrupt::typelevel::$irq;
}
impl sealed::Instance for peripherals::$inst {
fn regs() -> crate::pac::hash::Hash {
crate::pac::$inst
}
}
};
);
dma_trait!(Dma, Instance);