Corey Schuhen eafa90cd07 Remove the OperatingMode typestates
Instead have two explcit types(without the mode generic arg)types:
- One for config
- One for all operating modes
2024-02-18 13:09:37 +10:00

964 lines
34 KiB
Rust

#[allow(unused_variables)]
use core::future::poll_fn;
use core::marker::PhantomData;
use core::task::Poll;
pub mod fd;
use embassy_hal_internal::{into_ref, PeripheralRef};
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
use embassy_sync::channel::Channel;
use fd::config::*;
use fd::filter::*;
use crate::can::fd::peripheral::Registers;
use crate::gpio::sealed::AFType;
use crate::interrupt::typelevel::Interrupt;
use crate::rcc::RccPeripheral;
use crate::{interrupt, peripherals, Peripheral};
pub mod enums;
use enums::*;
pub mod util;
pub mod frame;
use frame::*;
#[cfg(feature = "time")]
type Timestamp = embassy_time::Instant;
#[cfg(not(feature = "time"))]
type Timestamp = u16;
/// Interrupt handler channel 0.
pub struct IT0InterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
// We use IT0 for everything currently
impl<T: Instance> interrupt::typelevel::Handler<T::IT0Interrupt> for IT0InterruptHandler<T> {
unsafe fn on_interrupt() {
let regs = T::regs();
let ir = regs.ir().read();
{
if ir.tc() {
regs.ir().write(|w| w.set_tc(true));
}
if ir.tefn() {
regs.ir().write(|w| w.set_tefn(true));
}
match &T::state().tx_mode {
sealed::TxMode::NonBuffered(waker) => waker.wake(),
sealed::TxMode::ClassicBuffered(buf) => {
if !T::registers().tx_queue_is_full() {
match buf.tx_receiver.try_receive() {
Ok(frame) => {
_ = T::registers().write_classic(&frame);
}
Err(_) => {}
}
}
}
sealed::TxMode::FdBuffered(buf) => {
if !T::registers().tx_queue_is_full() {
match buf.tx_receiver.try_receive() {
Ok(frame) => {
_ = T::registers().write_fd(&frame);
}
Err(_) => {}
}
}
}
}
}
if ir.ped() || ir.pea() {
regs.ir().write(|w| {
w.set_ped(true);
w.set_pea(true);
});
}
if ir.rfn(0) {
T::state().rx_mode.on_interrupt::<T>(0);
}
if ir.rfn(1) {
T::state().rx_mode.on_interrupt::<T>(1);
}
}
}
/// Interrupt handler channel 1.
pub struct IT1InterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::IT1Interrupt> for IT1InterruptHandler<T> {
unsafe fn on_interrupt() {}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Different operating modes
pub enum FdcanOperatingMode {
//PoweredDownMode,
//ConfigMode,
/// This mode can be used for a “Hot Selftest”, meaning the FDCAN can be tested without
/// affecting a running CAN system connected to the FDCAN_TX and FDCAN_RX pins. In this
/// mode, FDCAN_RX pin is disconnected from the FDCAN and FDCAN_TX pin is held
/// recessive.
InternalLoopbackMode,
/// This mode is provided for hardware self-test. To be independent from external stimulation,
/// the FDCAN ignores acknowledge errors (recessive bit sampled in the acknowledge slot of a
/// data / remote frame) in Loop Back mode. In this mode the FDCAN performs an internal
/// feedback from its transmit output to its receive input. The actual value of the FDCAN_RX
/// input pin is disregarded by the FDCAN. The transmitted messages can be monitored at the
/// FDCAN_TX transmit pin.
ExternalLoopbackMode,
/// The normal use of the Fdcan instance after configurations
NormalOperationMode,
/// In Restricted operation mode the node is able to receive data and remote frames and to give
/// acknowledge to valid frames, but it does not send data frames, remote frames, active error
/// frames, or overload frames. In case of an error condition or overload condition, it does not
/// send dominant bits, instead it waits for the occurrence of bus idle condition to resynchronize
/// itself to the CAN communication. The error counters for transmit and receive are frozen while
/// error logging (can_errors) is active. TODO: automatically enter in this mode?
RestrictedOperationMode,
/// In Bus monitoring mode (for more details refer to ISO11898-1, 10.12 Bus monitoring),
/// the FDCAN is able to receive valid data frames and valid remote frames, but cannot start a
/// transmission. In this mode, it sends only recessive bits on the CAN bus. If the FDCAN is
/// required to send a dominant bit (ACK bit, overload flag, active error flag), the bit is
/// rerouted internally so that the FDCAN can monitor it, even if the CAN bus remains in recessive
/// state. In Bus monitoring mode the TXBRP register is held in reset state. The Bus monitoring
/// mode can be used to analyze the traffic on a CAN bus without affecting it by the transmission
/// of dominant bits.
BusMonitoringMode,
//TestMode,
}
/// FDCAN Instance
pub struct FdcanConfigurator<'d, T: Instance> {
config: crate::can::fd::config::FdCanConfig,
/// Reference to internals.
instance: FdcanInstance<'d, T>,
}
fn calc_ns_per_timer_tick<T: Instance>(mode: crate::can::fd::config::FrameTransmissionConfig) -> u64 {
match mode {
// Use timestamp from Rx FIFO to adjust timestamp reported to user
crate::can::fd::config::FrameTransmissionConfig::ClassicCanOnly => {
let freq = T::frequency();
let prescale: u64 =
({ T::regs().nbtp().read().nbrp() } + 1) as u64 * ({ T::regs().tscc().read().tcp() } + 1) as u64;
1_000_000_000 as u64 / (freq.0 as u64 * prescale)
}
// For VBR this is too hard because the FDCAN timer switches clock rate you need to configure to use
// timer3 instead which is too hard to do from this module.
_ => 0,
}
}
impl<'d, T: Instance> FdcanConfigurator<'d, T> {
/// Creates a new Fdcan instance, keeping the peripheral in sleep mode.
/// You must call [Fdcan::enable_non_blocking] to use the peripheral.
pub fn new(
peri: impl Peripheral<P = T> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
_irqs: impl interrupt::typelevel::Binding<T::IT0Interrupt, IT0InterruptHandler<T>>
+ interrupt::typelevel::Binding<T::IT1Interrupt, IT1InterruptHandler<T>>
+ 'd,
) -> FdcanConfigurator<'d, T> {
into_ref!(peri, rx, tx);
rx.set_as_af(rx.af_num(), AFType::Input);
tx.set_as_af(tx.af_num(), AFType::OutputPushPull);
T::enable_and_reset();
let mut config = crate::can::fd::config::FdCanConfig::default();
T::registers().into_config_mode(config);
rx.set_as_af(rx.af_num(), AFType::Input);
tx.set_as_af(tx.af_num(), AFType::OutputPushPull);
T::configure_msg_ram();
unsafe {
// Enable timestamping
#[cfg(not(stm32h7))]
T::regs()
.tscc()
.write(|w| w.set_tss(stm32_metapac::can::vals::Tss::INCREMENT));
#[cfg(stm32h7)]
T::regs().tscc().write(|w| w.set_tss(0x01));
config.timestamp_source = TimestampSource::Prescaler(TimestampPrescaler::_1);
T::IT0Interrupt::unpend(); // Not unsafe
T::IT0Interrupt::enable();
T::IT1Interrupt::unpend(); // Not unsafe
T::IT1Interrupt::enable();
// this isn't really documented in the reference manual
// but corresponding txbtie bit has to be set for the TC (TxComplete) interrupt to fire
T::regs().txbtie().write(|w| w.0 = 0xffff_ffff);
}
T::regs().ie().modify(|w| {
w.set_rfne(0, true); // Rx Fifo 0 New Msg
w.set_rfne(1, true); // Rx Fifo 1 New Msg
w.set_tce(true); // Tx Complete
});
T::regs().ile().modify(|w| {
w.set_eint0(true); // Interrupt Line 0
w.set_eint1(true); // Interrupt Line 1
});
Self {
config,
instance: FdcanInstance(peri),
}
}
/// Get configuration
pub fn config(&self) -> crate::can::fd::config::FdCanConfig {
return self.config;
}
/// Set configuration
pub fn set_config(&mut self, config: crate::can::fd::config::FdCanConfig) {
self.config = config;
}
/// Configures the bit timings calculated from supplied bitrate.
pub fn set_bitrate(&mut self, bitrate: u32) {
let bit_timing = util::calc_can_timings(T::frequency(), bitrate).unwrap();
let nbtr = crate::can::fd::config::NominalBitTiming {
sync_jump_width: bit_timing.sync_jump_width,
prescaler: bit_timing.prescaler,
seg1: bit_timing.seg1,
seg2: bit_timing.seg2,
};
self.config = self.config.set_nominal_bit_timing(nbtr);
}
/// Configures the bit timings for VBR data calculated from supplied bitrate. This also sets confit to allow can FD and VBR
pub fn set_fd_data_bitrate(&mut self, bitrate: u32, transceiver_delay_compensation: bool) {
let bit_timing = util::calc_can_timings(T::frequency(), bitrate).unwrap();
// Note, used existing calcluation for normal(non-VBR) bitrate, appears to work for 250k/1M
let nbtr = crate::can::fd::config::DataBitTiming {
transceiver_delay_compensation,
sync_jump_width: bit_timing.sync_jump_width,
prescaler: bit_timing.prescaler,
seg1: bit_timing.seg1,
seg2: bit_timing.seg2,
};
self.config.frame_transmit = FrameTransmissionConfig::AllowFdCanAndBRS;
self.config = self.config.set_data_bit_timing(nbtr);
}
/// Set an Standard Address CAN filter into slot 'id'
#[inline]
pub fn set_standard_filter(&mut self, slot: StandardFilterSlot, filter: StandardFilter) {
T::registers().msg_ram_mut().filters.flssa[slot as usize].activate(filter);
}
/// Set an array of Standard Address CAN filters and overwrite the current set
pub fn set_standard_filters(&mut self, filters: &[StandardFilter; STANDARD_FILTER_MAX as usize]) {
for (i, f) in filters.iter().enumerate() {
T::registers().msg_ram_mut().filters.flssa[i].activate(*f);
}
}
/// Set an Extended Address CAN filter into slot 'id'
#[inline]
pub fn set_extended_filter(&mut self, slot: ExtendedFilterSlot, filter: ExtendedFilter) {
T::registers().msg_ram_mut().filters.flesa[slot as usize].activate(filter);
}
/// Set an array of Extended Address CAN filters and overwrite the current set
pub fn set_extended_filters(&mut self, filters: &[ExtendedFilter; EXTENDED_FILTER_MAX as usize]) {
for (i, f) in filters.iter().enumerate() {
T::registers().msg_ram_mut().filters.flesa[i].activate(*f);
}
}
/// Start in mode.
pub fn start(self, mode: FdcanOperatingMode) -> Fdcan<'d, T> {
let ns_per_timer_tick = calc_ns_per_timer_tick::<T>(self.config.frame_transmit);
critical_section::with(|_| unsafe {
T::mut_state().ns_per_timer_tick = ns_per_timer_tick;
});
T::registers().into_mode(self.config, mode);
let ret = Fdcan {
config: self.config,
instance: self.instance,
_mode: mode,
};
ret
}
/// Start, entering mode. Does same as start(mode)
pub fn into_normal_mode(self) -> Fdcan<'d, T> {
self.start(FdcanOperatingMode::NormalOperationMode)
}
/// Start, entering mode. Does same as start(mode)
pub fn into_internal_loopback_mode(self) -> Fdcan<'d, T> {
self.start(FdcanOperatingMode::InternalLoopbackMode)
}
/// Start, entering mode. Does same as start(mode)
pub fn into_external_loopback_mode(self) -> Fdcan<'d, T> {
self.start(FdcanOperatingMode::ExternalLoopbackMode)
}
}
/// FDCAN Instance
pub struct Fdcan<'d, T: Instance> {
config: crate::can::fd::config::FdCanConfig,
/// Reference to internals.
instance: FdcanInstance<'d, T>,
_mode: FdcanOperatingMode,
}
impl<'d, T: Instance> Fdcan<'d, T> {
/// Flush one of the TX mailboxes.
pub async fn flush(&self, idx: usize) {
poll_fn(|cx| {
T::state().tx_mode.register(cx.waker());
if idx > 3 {
panic!("Bad mailbox");
}
let idx = 1 << idx;
if !T::regs().txbrp().read().trp(idx) {
return Poll::Ready(());
}
Poll::Pending
})
.await;
}
/// Queues the message to be sent but exerts backpressure. If a lower-priority
/// frame is dropped from the mailbox, it is returned. If no lower-priority frames
/// can be replaced, this call asynchronously waits for a frame to be successfully
/// transmitted, then tries again.
pub async fn write(&mut self, frame: &ClassicFrame) -> Option<ClassicFrame> {
T::state().tx_mode.write::<T>(frame).await
}
/// Returns the next received message frame
pub async fn read(&mut self) -> Result<(ClassicFrame, Timestamp), BusError> {
T::state().rx_mode.read::<T>().await
}
/// Queues the message to be sent but exerts backpressure. If a lower-priority
/// frame is dropped from the mailbox, it is returned. If no lower-priority frames
/// can be replaced, this call asynchronously waits for a frame to be successfully
/// transmitted, then tries again.
pub async fn write_fd(&mut self, frame: &FdFrame) -> Option<FdFrame> {
T::state().tx_mode.write_fd::<T>(frame).await
}
/// Returns the next received message frame
pub async fn read_fd(&mut self) -> Result<(FdFrame, Timestamp), BusError> {
T::state().rx_mode.read_fd::<T>().await
}
/// Split instance into separate Tx(write) and Rx(read) portions
pub fn split(self) -> (FdcanTx<'d, T>, FdcanRx<'d, T>) {
(
FdcanTx {
config: self.config,
_instance: self.instance,
_mode: self._mode,
},
FdcanRx {
_instance1: PhantomData::<T>,
_instance2: T::regs(),
_mode: self._mode,
},
)
}
/// Join split rx and tx portions back together
pub fn join(tx: FdcanTx<'d, T>, rx: FdcanRx<'d, T>) -> Self {
Fdcan {
config: tx.config,
//_instance2: T::regs(),
instance: tx._instance,
_mode: rx._mode,
}
}
/// Return a buffered instance of driver without CAN FD support. User must supply Buffers
pub fn buffered<const TX_BUF_SIZE: usize, const RX_BUF_SIZE: usize>(
&self,
tx_buf: &'static mut TxBuf<TX_BUF_SIZE>,
rxb: &'static mut RxBuf<RX_BUF_SIZE>,
) -> BufferedCan<'d, T, TX_BUF_SIZE, RX_BUF_SIZE> {
BufferedCan::new(PhantomData::<T>, T::regs(), self._mode, tx_buf, rxb)
}
/// Return a buffered instance of driver with CAN FD support. User must supply Buffers
pub fn buffered_fd<const TX_BUF_SIZE: usize, const RX_BUF_SIZE: usize>(
&self,
tx_buf: &'static mut TxFdBuf<TX_BUF_SIZE>,
rxb: &'static mut RxFdBuf<RX_BUF_SIZE>,
) -> BufferedCanFd<'d, T, TX_BUF_SIZE, RX_BUF_SIZE> {
BufferedCanFd::new(PhantomData::<T>, T::regs(), self._mode, tx_buf, rxb)
}
}
/// User supplied buffer for RX Buffering
pub type RxBuf<const BUF_SIZE: usize> = Channel<CriticalSectionRawMutex, (ClassicFrame, Timestamp), BUF_SIZE>;
/// User supplied buffer for TX buffering
pub type TxBuf<const BUF_SIZE: usize> = Channel<CriticalSectionRawMutex, ClassicFrame, BUF_SIZE>;
/// Buffered FDCAN Instance
pub struct BufferedCan<'d, T: Instance, const TX_BUF_SIZE: usize, const RX_BUF_SIZE: usize> {
_instance1: PhantomData<T>,
_instance2: &'d crate::pac::can::Fdcan,
_mode: FdcanOperatingMode,
tx_buf: &'static TxBuf<TX_BUF_SIZE>,
rx_buf: &'static RxBuf<RX_BUF_SIZE>,
}
impl<'c, 'd, T: Instance, const TX_BUF_SIZE: usize, const RX_BUF_SIZE: usize>
BufferedCan<'d, T, TX_BUF_SIZE, RX_BUF_SIZE>
{
fn new(
_instance1: PhantomData<T>,
_instance2: &'d crate::pac::can::Fdcan,
_mode: FdcanOperatingMode,
tx_buf: &'static TxBuf<TX_BUF_SIZE>,
rx_buf: &'static RxBuf<RX_BUF_SIZE>,
) -> Self {
BufferedCan {
_instance1,
_instance2,
_mode,
tx_buf,
rx_buf,
}
.setup()
}
fn setup(self) -> Self {
// We don't want interrupts being processed while we change modes.
critical_section::with(|_| unsafe {
let rx_inner = sealed::ClassicBufferedRxInner {
rx_sender: self.rx_buf.sender().into(),
};
let tx_inner = sealed::ClassicBufferedTxInner {
tx_receiver: self.tx_buf.receiver().into(),
};
T::mut_state().rx_mode = sealed::RxMode::ClassicBuffered(rx_inner);
T::mut_state().tx_mode = sealed::TxMode::ClassicBuffered(tx_inner);
});
self
}
/// Async write frame to TX buffer.
pub async fn write(&mut self, frame: ClassicFrame) {
self.tx_buf.send(frame).await;
T::IT0Interrupt::pend(); // Wake for Tx
}
/// Async read frame from RX buffer.
pub async fn read(&mut self) -> Result<(ClassicFrame, Timestamp), BusError> {
Ok(self.rx_buf.receive().await)
}
}
impl<'c, 'd, T: Instance, const TX_BUF_SIZE: usize, const RX_BUF_SIZE: usize> Drop
for BufferedCan<'d, T, TX_BUF_SIZE, RX_BUF_SIZE>
{
fn drop(&mut self) {
critical_section::with(|_| unsafe {
T::mut_state().rx_mode = sealed::RxMode::NonBuffered(embassy_sync::waitqueue::AtomicWaker::new());
T::mut_state().tx_mode = sealed::TxMode::NonBuffered(embassy_sync::waitqueue::AtomicWaker::new());
});
}
}
/// User supplied buffer for RX Buffering
pub type RxFdBuf<const BUF_SIZE: usize> = Channel<CriticalSectionRawMutex, (FdFrame, Timestamp), BUF_SIZE>;
/// User supplied buffer for TX buffering
pub type TxFdBuf<const BUF_SIZE: usize> = Channel<CriticalSectionRawMutex, FdFrame, BUF_SIZE>;
/// Buffered FDCAN Instance
pub struct BufferedCanFd<'d, T: Instance, const TX_BUF_SIZE: usize, const RX_BUF_SIZE: usize> {
_instance1: PhantomData<T>,
_instance2: &'d crate::pac::can::Fdcan,
_mode: FdcanOperatingMode,
tx_buf: &'static TxFdBuf<TX_BUF_SIZE>,
rx_buf: &'static RxFdBuf<RX_BUF_SIZE>,
}
impl<'c, 'd, T: Instance, const TX_BUF_SIZE: usize, const RX_BUF_SIZE: usize>
BufferedCanFd<'d, T, TX_BUF_SIZE, RX_BUF_SIZE>
{
fn new(
_instance1: PhantomData<T>,
_instance2: &'d crate::pac::can::Fdcan,
_mode: FdcanOperatingMode,
tx_buf: &'static TxFdBuf<TX_BUF_SIZE>,
rx_buf: &'static RxFdBuf<RX_BUF_SIZE>,
) -> Self {
BufferedCanFd {
_instance1,
_instance2,
_mode,
tx_buf,
rx_buf,
}
.setup()
}
fn setup(self) -> Self {
// We don't want interrupts being processed while we change modes.
critical_section::with(|_| unsafe {
let rx_inner = sealed::FdBufferedRxInner {
rx_sender: self.rx_buf.sender().into(),
};
let tx_inner = sealed::FdBufferedTxInner {
tx_receiver: self.tx_buf.receiver().into(),
};
T::mut_state().rx_mode = sealed::RxMode::FdBuffered(rx_inner);
T::mut_state().tx_mode = sealed::TxMode::FdBuffered(tx_inner);
});
self
}
/// Async write frame to TX buffer.
pub async fn write(&mut self, frame: FdFrame) {
self.tx_buf.send(frame).await;
T::IT0Interrupt::pend(); // Wake for Tx
}
/// Async read frame from RX buffer.
pub async fn read(&mut self) -> Result<(FdFrame, Timestamp), BusError> {
Ok(self.rx_buf.receive().await)
}
}
impl<'c, 'd, T: Instance, const TX_BUF_SIZE: usize, const RX_BUF_SIZE: usize> Drop
for BufferedCanFd<'d, T, TX_BUF_SIZE, RX_BUF_SIZE>
{
fn drop(&mut self) {
critical_section::with(|_| unsafe {
T::mut_state().rx_mode = sealed::RxMode::NonBuffered(embassy_sync::waitqueue::AtomicWaker::new());
T::mut_state().tx_mode = sealed::TxMode::NonBuffered(embassy_sync::waitqueue::AtomicWaker::new());
});
}
}
/// FDCAN Rx only Instance
pub struct FdcanRx<'d, T: Instance> {
_instance1: PhantomData<T>,
_instance2: &'d crate::pac::can::Fdcan,
_mode: FdcanOperatingMode,
}
/// FDCAN Tx only Instance
pub struct FdcanTx<'d, T: Instance> {
config: crate::can::fd::config::FdCanConfig,
_instance: FdcanInstance<'d, T>, //(PeripheralRef<'a, T>);
_mode: FdcanOperatingMode,
}
impl<'c, 'd, T: Instance> FdcanTx<'d, T> {
/// Queues the message to be sent but exerts backpressure. If a lower-priority
/// frame is dropped from the mailbox, it is returned. If no lower-priority frames
/// can be replaced, this call asynchronously waits for a frame to be successfully
/// transmitted, then tries again.
pub async fn write(&mut self, frame: &ClassicFrame) -> Option<ClassicFrame> {
T::state().tx_mode.write::<T>(frame).await
}
/// Queues the message to be sent but exerts backpressure. If a lower-priority
/// frame is dropped from the mailbox, it is returned. If no lower-priority frames
/// can be replaced, this call asynchronously waits for a frame to be successfully
/// transmitted, then tries again.
pub async fn write_fd(&mut self, frame: &FdFrame) -> Option<FdFrame> {
T::state().tx_mode.write_fd::<T>(frame).await
}
}
impl<'c, 'd, T: Instance> FdcanRx<'d, T> {
/// Returns the next received message frame
pub async fn read(&mut self) -> Result<(ClassicFrame, Timestamp), BusError> {
T::state().rx_mode.read::<T>().await
}
/// Returns the next received message frame
pub async fn read_fd(&mut self) -> Result<(FdFrame, Timestamp), BusError> {
T::state().rx_mode.read_fd::<T>().await
}
}
pub(crate) mod sealed {
use core::future::poll_fn;
use core::task::Poll;
use embassy_sync::channel::{DynamicReceiver, DynamicSender};
use embassy_sync::waitqueue::AtomicWaker;
use crate::can::_version::{BusError, Timestamp};
use crate::can::frame::{ClassicFrame, FdFrame};
pub struct ClassicBufferedRxInner {
pub rx_sender: DynamicSender<'static, (ClassicFrame, Timestamp)>,
}
pub struct ClassicBufferedTxInner {
pub tx_receiver: DynamicReceiver<'static, ClassicFrame>,
}
pub struct FdBufferedRxInner {
pub rx_sender: DynamicSender<'static, (FdFrame, Timestamp)>,
}
pub struct FdBufferedTxInner {
pub tx_receiver: DynamicReceiver<'static, FdFrame>,
}
pub enum RxMode {
NonBuffered(AtomicWaker),
ClassicBuffered(ClassicBufferedRxInner),
FdBuffered(FdBufferedRxInner),
}
impl RxMode {
pub fn register(&self, arg: &core::task::Waker) {
match self {
RxMode::NonBuffered(waker) => waker.register(arg),
_ => {
panic!("Bad Mode")
}
}
}
pub fn on_interrupt<T: Instance>(&self, fifonr: usize) {
T::regs().ir().write(|w| w.set_rfn(fifonr, true));
match self {
RxMode::NonBuffered(waker) => {
waker.wake();
}
RxMode::ClassicBuffered(buf) => {
if let Some(r) = T::registers().read_classic(fifonr) {
let ts = T::calc_timestamp(T::state().ns_per_timer_tick, r.1);
let _ = buf.rx_sender.try_send((r.0, ts));
}
}
RxMode::FdBuffered(buf) => {
if let Some(r) = T::registers().read_fd(fifonr) {
let ts = T::calc_timestamp(T::state().ns_per_timer_tick, r.1);
let _ = buf.rx_sender.try_send((r.0, ts));
}
}
}
}
pub async fn read<T: Instance>(&self) -> Result<(ClassicFrame, Timestamp), BusError> {
poll_fn(|cx| {
T::state().err_waker.register(cx.waker());
self.register(cx.waker());
if let Some((msg, ts)) = T::registers().read_classic(0) {
let ts = T::calc_timestamp(T::state().ns_per_timer_tick, ts);
return Poll::Ready(Ok((msg, ts)));
} else if let Some((msg, ts)) = T::registers().read_classic(1) {
let ts = T::calc_timestamp(T::state().ns_per_timer_tick, ts);
return Poll::Ready(Ok((msg, ts)));
} else if let Some(err) = T::registers().curr_error() {
// TODO: this is probably wrong
return Poll::Ready(Err(err));
}
Poll::Pending
})
.await
}
pub async fn read_fd<T: Instance>(&self) -> Result<(FdFrame, Timestamp), BusError> {
poll_fn(|cx| {
T::state().err_waker.register(cx.waker());
self.register(cx.waker());
if let Some((msg, ts)) = T::registers().read_fd(0) {
let ts = T::calc_timestamp(T::state().ns_per_timer_tick, ts);
return Poll::Ready(Ok((msg, ts)));
} else if let Some((msg, ts)) = T::registers().read_fd(1) {
let ts = T::calc_timestamp(T::state().ns_per_timer_tick, ts);
return Poll::Ready(Ok((msg, ts)));
} else if let Some(err) = T::registers().curr_error() {
// TODO: this is probably wrong
return Poll::Ready(Err(err));
}
Poll::Pending
})
.await
}
}
pub enum TxMode {
NonBuffered(AtomicWaker),
ClassicBuffered(ClassicBufferedTxInner),
FdBuffered(FdBufferedTxInner),
}
impl TxMode {
pub fn register(&self, arg: &core::task::Waker) {
match self {
TxMode::NonBuffered(waker) => {
waker.register(arg);
}
_ => {
panic!("Bad mode");
}
}
}
/// Queues the message to be sent but exerts backpressure. If a lower-priority
/// frame is dropped from the mailbox, it is returned. If no lower-priority frames
/// can be replaced, this call asynchronously waits for a frame to be successfully
/// transmitted, then tries again.
pub async fn write<T: Instance>(&self, frame: &ClassicFrame) -> Option<ClassicFrame> {
poll_fn(|cx| {
self.register(cx.waker());
if let Ok(dropped) = T::registers().write_classic(frame) {
return Poll::Ready(dropped);
}
// Couldn't replace any lower priority frames. Need to wait for some mailboxes
// to clear.
Poll::Pending
})
.await
}
/// Queues the message to be sent but exerts backpressure. If a lower-priority
/// frame is dropped from the mailbox, it is returned. If no lower-priority frames
/// can be replaced, this call asynchronously waits for a frame to be successfully
/// transmitted, then tries again.
pub async fn write_fd<T: Instance>(&self, frame: &FdFrame) -> Option<FdFrame> {
poll_fn(|cx| {
self.register(cx.waker());
if let Ok(dropped) = T::registers().write_fd(frame) {
return Poll::Ready(dropped);
}
// Couldn't replace any lower priority frames. Need to wait for some mailboxes
// to clear.
Poll::Pending
})
.await
}
}
pub struct State {
pub rx_mode: RxMode,
pub tx_mode: TxMode,
pub ns_per_timer_tick: u64,
pub err_waker: AtomicWaker,
}
impl State {
pub const fn new() -> Self {
Self {
rx_mode: RxMode::NonBuffered(AtomicWaker::new()),
tx_mode: TxMode::NonBuffered(AtomicWaker::new()),
ns_per_timer_tick: 0,
err_waker: AtomicWaker::new(),
}
}
}
pub trait Instance {
const MSG_RAM_OFFSET: usize;
fn regs() -> &'static crate::pac::can::Fdcan;
fn registers() -> crate::can::fd::peripheral::Registers;
fn ram() -> &'static crate::pac::fdcanram::Fdcanram;
fn state() -> &'static State;
unsafe fn mut_state() -> &'static mut State;
fn calc_timestamp(ns_per_timer_tick: u64, ts_val: u16) -> Timestamp;
#[cfg(not(stm32h7))]
fn configure_msg_ram() {}
#[cfg(stm32h7)]
fn configure_msg_ram() {
let r = Self::regs();
use crate::can::fd::message_ram::*;
//use fdcan::message_ram::*;
let mut offset_words = Self::MSG_RAM_OFFSET as u16;
// 11-bit filter
r.sidfc().modify(|w| w.set_flssa(offset_words));
offset_words += STANDARD_FILTER_MAX as u16;
// 29-bit filter
r.xidfc().modify(|w| w.set_flesa(offset_words));
offset_words += 2 * EXTENDED_FILTER_MAX as u16;
// Rx FIFO 0 and 1
for i in 0..=1 {
r.rxfc(i).modify(|w| {
w.set_fsa(offset_words);
w.set_fs(RX_FIFO_MAX);
w.set_fwm(RX_FIFO_MAX);
});
offset_words += 18 * RX_FIFO_MAX as u16;
}
// Rx buffer - see below
// Tx event FIFO
r.txefc().modify(|w| {
w.set_efsa(offset_words);
w.set_efs(TX_EVENT_MAX);
w.set_efwm(TX_EVENT_MAX);
});
offset_words += 2 * TX_EVENT_MAX as u16;
// Tx buffers
r.txbc().modify(|w| {
w.set_tbsa(offset_words);
w.set_tfqs(TX_FIFO_MAX);
});
offset_words += 18 * TX_FIFO_MAX as u16;
// Rx Buffer - not used
r.rxbc().modify(|w| {
w.set_rbsa(offset_words);
});
// TX event FIFO?
// Trigger memory?
// Set the element sizes to 16 bytes
r.rxesc().modify(|w| {
w.set_rbds(0b111);
for i in 0..=1 {
w.set_fds(i, 0b111);
}
});
r.txesc().modify(|w| {
w.set_tbds(0b111);
})
}
}
}
/// Trait for FDCAN interrupt channel 0
pub trait IT0Instance {
/// Type for FDCAN interrupt channel 0
type IT0Interrupt: crate::interrupt::typelevel::Interrupt;
}
/// Trait for FDCAN interrupt channel 1
pub trait IT1Instance {
/// Type for FDCAN interrupt channel 1
type IT1Interrupt: crate::interrupt::typelevel::Interrupt;
}
/// InterruptableInstance trait
pub trait InterruptableInstance: IT0Instance + IT1Instance {}
/// Instance trait
pub trait Instance: sealed::Instance + RccPeripheral + InterruptableInstance + 'static {}
/// Fdcan Instance struct
pub struct FdcanInstance<'a, T>(PeripheralRef<'a, T>);
macro_rules! impl_fdcan {
($inst:ident, $msg_ram_inst:ident, $msg_ram_offset:literal) => {
impl sealed::Instance for peripherals::$inst {
const MSG_RAM_OFFSET: usize = $msg_ram_offset;
fn regs() -> &'static crate::pac::can::Fdcan {
&crate::pac::$inst
}
fn registers() -> Registers {
Registers{regs: &crate::pac::$inst, msgram: &crate::pac::$msg_ram_inst}
}
fn ram() -> &'static crate::pac::fdcanram::Fdcanram {
&crate::pac::$msg_ram_inst
}
unsafe fn mut_state() -> & 'static mut sealed::State {
static mut STATE: sealed::State = sealed::State::new();
& mut STATE
}
fn state() -> &'static sealed::State {
unsafe { peripherals::$inst::mut_state() }
}
#[cfg(feature = "time")]
fn calc_timestamp(ns_per_timer_tick: u64, ts_val: u16) -> Timestamp {
let now_embassy = embassy_time::Instant::now();
if ns_per_timer_tick == 0 {
return now_embassy;
}
let cantime = { Self::regs().tscv().read().tsc() };
let delta = cantime.overflowing_sub(ts_val).0 as u64;
let ns = ns_per_timer_tick * delta as u64;
now_embassy - embassy_time::Duration::from_nanos(ns)
}
#[cfg(not(feature = "time"))]
fn calc_timestamp(_ns_per_timer_tick: u64, ts_val: u16) -> Timestamp {
ts_val
}
}
impl Instance for peripherals::$inst {}
foreach_interrupt!(
($inst,can,FDCAN,IT0,$irq:ident) => {
impl IT0Instance for peripherals::$inst {
type IT0Interrupt = crate::interrupt::typelevel::$irq;
}
};
($inst,can,FDCAN,IT1,$irq:ident) => {
impl IT1Instance for peripherals::$inst {
type IT1Interrupt = crate::interrupt::typelevel::$irq;
}
};
);
impl InterruptableInstance for peripherals::$inst {}
};
($inst:ident, $msg_ram_inst:ident) => {
impl_fdcan!($inst, $msg_ram_inst, 0);
};
}
#[cfg(not(stm32h7))]
foreach_peripheral!(
(can, FDCAN) => { impl_fdcan!(FDCAN, FDCANRAM); };
(can, FDCAN1) => { impl_fdcan!(FDCAN1, FDCANRAM1); };
(can, FDCAN2) => { impl_fdcan!(FDCAN2, FDCANRAM2); };
(can, FDCAN3) => { impl_fdcan!(FDCAN3, FDCANRAM3); };
);
#[cfg(stm32h7)]
foreach_peripheral!(
(can, FDCAN1) => { impl_fdcan!(FDCAN1, FDCANRAM, 0x0000); };
(can, FDCAN2) => { impl_fdcan!(FDCAN2, FDCANRAM, 0x0C00); };
(can, FDCAN3) => { impl_fdcan!(FDCAN3, FDCANRAM, 0x1800); };
);
pin_trait!(RxPin, Instance);
pin_trait!(TxPin, Instance);