Currently this looks up the frequency in the global singleton that must be initialized by the per-chip RCC implementation. At present, this is only done for the L0 family of chips.
		
			
				
	
	
		
			373 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			373 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
#![macro_use]
 | 
						|
 | 
						|
use core::cell::Cell;
 | 
						|
use core::convert::TryInto;
 | 
						|
use core::sync::atomic::{compiler_fence, Ordering};
 | 
						|
 | 
						|
use atomic_polyfill::AtomicU32;
 | 
						|
use embassy::interrupt::InterruptExt;
 | 
						|
use embassy::time::{Clock as EmbassyClock, TICKS_PER_SECOND};
 | 
						|
 | 
						|
use crate::interrupt::{CriticalSection, Interrupt, Mutex};
 | 
						|
use crate::pac::timer::TimGp16;
 | 
						|
use crate::peripherals;
 | 
						|
use crate::rcc::RccPeripheral;
 | 
						|
use crate::time::Hertz;
 | 
						|
 | 
						|
// Clock timekeeping works with something we call "periods", which are time intervals
 | 
						|
// of 2^15 ticks. The Clock counter value is 16 bits, so one "overflow cycle" is 2 periods.
 | 
						|
//
 | 
						|
// A `period` count is maintained in parallel to the Timer hardware `counter`, like this:
 | 
						|
// - `period` and `counter` start at 0
 | 
						|
// - `period` is incremented on overflow (at counter value 0)
 | 
						|
// - `period` is incremented "midway" between overflows (at counter value 0x8000)
 | 
						|
//
 | 
						|
// Therefore, when `period` is even, counter is in 0..0x7FFF. When odd, counter is in 0x8000..0xFFFF
 | 
						|
// This allows for now() to return the correct value even if it races an overflow.
 | 
						|
//
 | 
						|
// To get `now()`, `period` is read first, then `counter` is read. If the counter value matches
 | 
						|
// the expected range for the `period` parity, we're done. If it doesn't, this means that
 | 
						|
// a new period start has raced us between reading `period` and `counter`, so we assume the `counter` value
 | 
						|
// corresponds to the next period.
 | 
						|
//
 | 
						|
// `period` is a 32bit integer, so It overflows on 2^32 * 2^15 / 32768 seconds of uptime, which is 136 years.
 | 
						|
fn calc_now(period: u32, counter: u16) -> u64 {
 | 
						|
    ((period as u64) << 15) + ((counter as u32 ^ ((period & 1) << 15)) as u64)
 | 
						|
}
 | 
						|
 | 
						|
struct AlarmState {
 | 
						|
    timestamp: Cell<u64>,
 | 
						|
    #[allow(clippy::type_complexity)]
 | 
						|
    callback: Cell<Option<(fn(*mut ()), *mut ())>>,
 | 
						|
}
 | 
						|
 | 
						|
impl AlarmState {
 | 
						|
    fn new() -> Self {
 | 
						|
        Self {
 | 
						|
            timestamp: Cell::new(u64::MAX),
 | 
						|
            callback: Cell::new(None),
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
const ALARM_COUNT: usize = 3;
 | 
						|
 | 
						|
/// Clock timer that can be used by the executor and to set alarms.
 | 
						|
///
 | 
						|
/// It can work with Timers 2, 3, 4, 5. This timer works internally with a unit of 2^15 ticks, which
 | 
						|
/// means that if a call to [`embassy::time::Clock::now`] is blocked for that amount of ticks the
 | 
						|
/// returned value will be wrong (an old value). The current default tick rate is 32768 ticks per
 | 
						|
/// second.
 | 
						|
pub struct Clock<T: Instance> {
 | 
						|
    _inner: T,
 | 
						|
    irq: T::Interrupt,
 | 
						|
    /// Number of 2^23 periods elapsed since boot.
 | 
						|
    period: AtomicU32,
 | 
						|
    /// Timestamp at which to fire alarm. u64::MAX if no alarm is scheduled.
 | 
						|
    alarms: Mutex<[AlarmState; ALARM_COUNT]>,
 | 
						|
}
 | 
						|
 | 
						|
impl<T: Instance> Clock<T> {
 | 
						|
    pub fn new(peripheral: T, irq: T::Interrupt) -> Self {
 | 
						|
        Self {
 | 
						|
            _inner: peripheral,
 | 
						|
            irq,
 | 
						|
            period: AtomicU32::new(0),
 | 
						|
            alarms: Mutex::new([AlarmState::new(), AlarmState::new(), AlarmState::new()]),
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    pub fn start(&'static self) {
 | 
						|
        let inner = T::inner();
 | 
						|
 | 
						|
        T::enable();
 | 
						|
        T::reset();
 | 
						|
 | 
						|
        let timer_freq = T::frequency();
 | 
						|
 | 
						|
        // NOTE(unsafe) Critical section to use the unsafe methods
 | 
						|
        critical_section::with(|_| {
 | 
						|
            unsafe {
 | 
						|
                inner.prepare(timer_freq);
 | 
						|
            }
 | 
						|
 | 
						|
            self.irq.set_handler_context(self as *const _ as *mut _);
 | 
						|
            self.irq.set_handler(|ptr| unsafe {
 | 
						|
                let this = &*(ptr as *const () as *const Self);
 | 
						|
                this.on_interrupt();
 | 
						|
            });
 | 
						|
            self.irq.unpend();
 | 
						|
            self.irq.enable();
 | 
						|
 | 
						|
            unsafe {
 | 
						|
                inner.start_counter();
 | 
						|
            }
 | 
						|
        })
 | 
						|
    }
 | 
						|
 | 
						|
    fn on_interrupt(&self) {
 | 
						|
        let inner = T::inner();
 | 
						|
 | 
						|
        // NOTE(unsafe) Use critical section to access the methods
 | 
						|
        // XXX: reduce the size of this critical section ?
 | 
						|
        critical_section::with(|cs| unsafe {
 | 
						|
            if inner.overflow_interrupt_status() {
 | 
						|
                inner.overflow_clear_flag();
 | 
						|
                self.next_period();
 | 
						|
            }
 | 
						|
 | 
						|
            // Half overflow
 | 
						|
            if inner.compare_interrupt_status(0) {
 | 
						|
                inner.compare_clear_flag(0);
 | 
						|
                self.next_period();
 | 
						|
            }
 | 
						|
 | 
						|
            for n in 1..=ALARM_COUNT {
 | 
						|
                if inner.compare_interrupt_status(n) {
 | 
						|
                    inner.compare_clear_flag(n);
 | 
						|
                    self.trigger_alarm(n, cs);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        })
 | 
						|
    }
 | 
						|
 | 
						|
    fn next_period(&self) {
 | 
						|
        let inner = T::inner();
 | 
						|
 | 
						|
        let period = self.period.fetch_add(1, Ordering::Relaxed) + 1;
 | 
						|
        let t = (period as u64) << 15;
 | 
						|
 | 
						|
        critical_section::with(move |cs| {
 | 
						|
            for n in 1..=ALARM_COUNT {
 | 
						|
                let alarm = &self.alarms.borrow(cs)[n - 1];
 | 
						|
                let at = alarm.timestamp.get();
 | 
						|
 | 
						|
                let diff = at - t;
 | 
						|
                if diff < 0xc000 {
 | 
						|
                    inner.set_compare(n, at as u16);
 | 
						|
                    // NOTE(unsafe) We're in a critical section
 | 
						|
                    unsafe {
 | 
						|
                        inner.set_compare_interrupt(n, true);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        })
 | 
						|
    }
 | 
						|
 | 
						|
    fn trigger_alarm(&self, n: usize, cs: CriticalSection) {
 | 
						|
        let inner = T::inner();
 | 
						|
        // NOTE(unsafe) We have a critical section
 | 
						|
        unsafe {
 | 
						|
            inner.set_compare_interrupt(n, false);
 | 
						|
        }
 | 
						|
 | 
						|
        let alarm = &self.alarms.borrow(cs)[n - 1];
 | 
						|
        alarm.timestamp.set(u64::MAX);
 | 
						|
 | 
						|
        // Call after clearing alarm, so the callback can set another alarm.
 | 
						|
        if let Some((f, ctx)) = alarm.callback.get() {
 | 
						|
            f(ctx);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    fn set_alarm_callback(&self, n: usize, callback: fn(*mut ()), ctx: *mut ()) {
 | 
						|
        critical_section::with(|cs| {
 | 
						|
            let alarm = &self.alarms.borrow(cs)[n - 1];
 | 
						|
            alarm.callback.set(Some((callback, ctx)));
 | 
						|
        })
 | 
						|
    }
 | 
						|
 | 
						|
    fn set_alarm(&self, n: usize, timestamp: u64) {
 | 
						|
        critical_section::with(|cs| {
 | 
						|
            let inner = T::inner();
 | 
						|
 | 
						|
            let alarm = &self.alarms.borrow(cs)[n - 1];
 | 
						|
            alarm.timestamp.set(timestamp);
 | 
						|
 | 
						|
            let t = self.now();
 | 
						|
            if timestamp <= t {
 | 
						|
                self.trigger_alarm(n, cs);
 | 
						|
                return;
 | 
						|
            }
 | 
						|
 | 
						|
            let diff = timestamp - t;
 | 
						|
            if diff < 0xc000 {
 | 
						|
                let safe_timestamp = timestamp.max(t + 3);
 | 
						|
                inner.set_compare(n, safe_timestamp as u16);
 | 
						|
 | 
						|
                // NOTE(unsafe) We're in a critical section
 | 
						|
                unsafe {
 | 
						|
                    inner.set_compare_interrupt(n, true);
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                unsafe {
 | 
						|
                    inner.set_compare_interrupt(n, false);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        })
 | 
						|
    }
 | 
						|
 | 
						|
    pub fn alarm1(&'static self) -> Alarm<T> {
 | 
						|
        Alarm { n: 1, rtc: self }
 | 
						|
    }
 | 
						|
    pub fn alarm2(&'static self) -> Alarm<T> {
 | 
						|
        Alarm { n: 2, rtc: self }
 | 
						|
    }
 | 
						|
    pub fn alarm3(&'static self) -> Alarm<T> {
 | 
						|
        Alarm { n: 3, rtc: self }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
impl<T: Instance> EmbassyClock for Clock<T> {
 | 
						|
    fn now(&self) -> u64 {
 | 
						|
        let inner = T::inner();
 | 
						|
 | 
						|
        let period = self.period.load(Ordering::Relaxed);
 | 
						|
        compiler_fence(Ordering::Acquire);
 | 
						|
        let counter = inner.counter();
 | 
						|
        calc_now(period, counter)
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
pub struct Alarm<T: Instance> {
 | 
						|
    n: usize,
 | 
						|
    rtc: &'static Clock<T>,
 | 
						|
}
 | 
						|
 | 
						|
impl<T: Instance> embassy::time::Alarm for Alarm<T> {
 | 
						|
    fn set_callback(&self, callback: fn(*mut ()), ctx: *mut ()) {
 | 
						|
        self.rtc.set_alarm_callback(self.n, callback, ctx);
 | 
						|
    }
 | 
						|
 | 
						|
    fn set(&self, timestamp: u64) {
 | 
						|
        self.rtc.set_alarm(self.n, timestamp);
 | 
						|
    }
 | 
						|
 | 
						|
    fn clear(&self) {
 | 
						|
        self.rtc.set_alarm(self.n, u64::MAX);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
pub struct TimerInner(pub(crate) TimGp16);
 | 
						|
 | 
						|
impl TimerInner {
 | 
						|
    unsafe fn prepare(&self, timer_freq: Hertz) {
 | 
						|
        self.stop_and_reset();
 | 
						|
 | 
						|
        let psc = timer_freq.0 / TICKS_PER_SECOND as u32 - 1;
 | 
						|
        let psc: u16 = psc.try_into().unwrap();
 | 
						|
 | 
						|
        self.set_psc_arr(psc, u16::MAX);
 | 
						|
        // Mid-way point
 | 
						|
        self.set_compare(0, 0x8000);
 | 
						|
        self.set_compare_interrupt(0, true);
 | 
						|
    }
 | 
						|
 | 
						|
    unsafe fn start_counter(&self) {
 | 
						|
        self.0.cr1().modify(|w| w.set_cen(true));
 | 
						|
    }
 | 
						|
 | 
						|
    unsafe fn stop_and_reset(&self) {
 | 
						|
        let regs = self.0;
 | 
						|
 | 
						|
        regs.cr1().modify(|w| w.set_cen(false));
 | 
						|
        regs.cnt().write(|w| w.set_cnt(0));
 | 
						|
    }
 | 
						|
 | 
						|
    fn overflow_interrupt_status(&self) -> bool {
 | 
						|
        // NOTE(unsafe) Atomic read with no side-effects
 | 
						|
        unsafe { self.0.sr().read().uif() }
 | 
						|
    }
 | 
						|
 | 
						|
    unsafe fn overflow_clear_flag(&self) {
 | 
						|
        self.0.sr().modify(|w| w.set_uif(false));
 | 
						|
    }
 | 
						|
 | 
						|
    unsafe fn set_psc_arr(&self, psc: u16, arr: u16) {
 | 
						|
        use crate::pac::timer::vals::Urs;
 | 
						|
 | 
						|
        let regs = self.0;
 | 
						|
 | 
						|
        regs.psc().write(|w| w.set_psc(psc));
 | 
						|
        regs.arr().write(|w| w.set_arr(arr));
 | 
						|
 | 
						|
        // Set URS, generate update and clear URS
 | 
						|
        regs.cr1().modify(|w| w.set_urs(Urs::COUNTERONLY));
 | 
						|
        regs.egr().write(|w| w.set_ug(true));
 | 
						|
        regs.cr1().modify(|w| w.set_urs(Urs::ANYEVENT));
 | 
						|
    }
 | 
						|
 | 
						|
    fn compare_interrupt_status(&self, n: usize) -> bool {
 | 
						|
        if n > 3 {
 | 
						|
            false
 | 
						|
        } else {
 | 
						|
            // NOTE(unsafe) Atomic read with no side-effects
 | 
						|
            unsafe { self.0.sr().read().ccif(n) }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    unsafe fn compare_clear_flag(&self, n: usize) {
 | 
						|
        if n > 3 {
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        self.0.sr().modify(|w| w.set_ccif(n, false));
 | 
						|
    }
 | 
						|
 | 
						|
    fn set_compare(&self, n: usize, value: u16) {
 | 
						|
        if n > 3 {
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        // NOTE(unsafe) Atomic write
 | 
						|
        unsafe {
 | 
						|
            self.0.ccr(n).write(|w| w.set_ccr(value));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    unsafe fn set_compare_interrupt(&self, n: usize, enable: bool) {
 | 
						|
        if n > 3 {
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        self.0.dier().modify(|w| w.set_ccie(n, enable));
 | 
						|
    }
 | 
						|
 | 
						|
    fn counter(&self) -> u16 {
 | 
						|
        // NOTE(unsafe) Atomic read with no side-effects
 | 
						|
        unsafe { self.0.cnt().read().cnt() }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// ------------------------------------------------------
 | 
						|
 | 
						|
pub(crate) mod sealed {
 | 
						|
    use super::*;
 | 
						|
    pub trait Instance {
 | 
						|
        type Interrupt: Interrupt;
 | 
						|
 | 
						|
        fn inner() -> TimerInner;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
pub trait Instance: sealed::Instance + Sized + RccPeripheral + 'static {}
 | 
						|
 | 
						|
macro_rules! impl_timer {
 | 
						|
    ($inst:ident) => {
 | 
						|
        impl sealed::Instance for peripherals::$inst {
 | 
						|
            type Interrupt = crate::interrupt::$inst;
 | 
						|
 | 
						|
            fn inner() -> crate::clock::TimerInner {
 | 
						|
                const INNER: TimerInner = TimerInner(crate::pac::$inst);
 | 
						|
                INNER
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        impl Instance for peripherals::$inst {}
 | 
						|
    };
 | 
						|
}
 | 
						|
 | 
						|
crate::pac::peripherals!(
 | 
						|
    (timer, TIM2) => { impl_timer!(TIM2); };
 | 
						|
    (timer, TIM3) => { impl_timer!(TIM3); };
 | 
						|
    (timer, TIM4) => { impl_timer!(TIM4); };
 | 
						|
    (timer, TIM5) => { impl_timer!(TIM5); };
 | 
						|
);
 |