2024-12-30 12:13:13 +01:00

688 lines
20 KiB
Rust
Executable File

//! Quad Serial Peripheral Interface (QSPI) flash driver.
#![macro_use]
use core::future::{poll_fn, Future};
use core::marker::PhantomData;
use core::ptr;
use core::task::Poll;
use embassy_hal_internal::drop::OnDrop;
use embassy_hal_internal::{into_ref, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
use embedded_storage::nor_flash::{ErrorType, NorFlash, NorFlashError, NorFlashErrorKind, ReadNorFlash};
use crate::gpio::{self, Pin as GpioPin};
use crate::interrupt::typelevel::Interrupt;
use crate::pac::gpio::vals as gpiovals;
use crate::pac::qspi::vals;
pub use crate::pac::qspi::vals::{
Addrmode as AddressMode, Ppsize as WritePageSize, Readoc as ReadOpcode, Spimode as SpiMode, Writeoc as WriteOpcode,
};
use crate::{interrupt, pac, Peripheral};
/// Deep power-down config.
pub struct DeepPowerDownConfig {
/// Time required for entering DPM, in units of 16us
pub enter_time: u16,
/// Time required for exiting DPM, in units of 16us
pub exit_time: u16,
}
/// QSPI bus frequency.
pub enum Frequency {
/// 32 Mhz
M32 = 0,
/// 16 Mhz
M16 = 1,
/// 10.7 Mhz
M10_7 = 2,
/// 8 Mhz
M8 = 3,
/// 6.4 Mhz
M6_4 = 4,
/// 5.3 Mhz
M5_3 = 5,
/// 4.6 Mhz
M4_6 = 6,
/// 4 Mhz
M4 = 7,
/// 3.6 Mhz
M3_6 = 8,
/// 3.2 Mhz
M3_2 = 9,
/// 2.9 Mhz
M2_9 = 10,
/// 2.7 Mhz
M2_7 = 11,
/// 2.5 Mhz
M2_5 = 12,
/// 2.3 Mhz
M2_3 = 13,
/// 2.1 Mhz
M2_1 = 14,
/// 2 Mhz
M2 = 15,
}
/// QSPI config.
#[non_exhaustive]
pub struct Config {
/// XIP offset.
pub xip_offset: u32,
/// Opcode used for read operations.
pub read_opcode: ReadOpcode,
/// Opcode used for write operations.
pub write_opcode: WriteOpcode,
/// Page size for write operations.
pub write_page_size: WritePageSize,
/// Configuration for deep power down. If None, deep power down is disabled.
pub deep_power_down: Option<DeepPowerDownConfig>,
/// QSPI bus frequency.
pub frequency: Frequency,
/// Value is specified in number of 16 MHz periods (62.5 ns)
pub sck_delay: u8,
/// Value is specified in number of 64 MHz periods (15.625 ns), valid values between 0 and 7 (inclusive)
pub rx_delay: u8,
/// Whether data is captured on the clock rising edge and data is output on a falling edge (MODE0) or vice-versa (MODE3)
pub spi_mode: SpiMode,
/// Addressing mode (24-bit or 32-bit)
pub address_mode: AddressMode,
/// Flash memory capacity in bytes. This is the value reported by the `embedded-storage` traits.
pub capacity: u32,
}
impl Default for Config {
fn default() -> Self {
Self {
read_opcode: ReadOpcode::READ4IO,
write_opcode: WriteOpcode::PP4IO,
xip_offset: 0,
write_page_size: WritePageSize::_256BYTES,
deep_power_down: None,
frequency: Frequency::M8,
sck_delay: 80,
rx_delay: 2,
spi_mode: SpiMode::MODE0,
address_mode: AddressMode::_24BIT,
capacity: 0,
}
}
}
/// Error
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {
/// Operation address was out of bounds.
OutOfBounds,
// TODO add "not in data memory" error and check for it
}
/// Interrupt handler.
pub struct InterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
unsafe fn on_interrupt() {
let r = T::regs();
let s = T::state();
if r.events_ready().read() != 0 {
s.waker.wake();
r.intenclr().write(|w| w.set_ready(true));
}
}
}
/// QSPI flash driver.
pub struct Qspi<'d, T: Instance> {
_peri: PeripheralRef<'d, T>,
dpm_enabled: bool,
capacity: u32,
}
impl<'d, T: Instance> Qspi<'d, T> {
/// Create a new QSPI driver.
pub fn new(
qspi: impl Peripheral<P = T> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
sck: impl Peripheral<P = impl GpioPin> + 'd,
csn: impl Peripheral<P = impl GpioPin> + 'd,
io0: impl Peripheral<P = impl GpioPin> + 'd,
io1: impl Peripheral<P = impl GpioPin> + 'd,
io2: impl Peripheral<P = impl GpioPin> + 'd,
io3: impl Peripheral<P = impl GpioPin> + 'd,
config: Config,
) -> Self {
into_ref!(qspi, sck, csn, io0, io1, io2, io3);
let r = T::regs();
macro_rules! config_pin {
($pin:ident) => {
$pin.set_high();
$pin.conf().write(|w| {
w.set_dir(gpiovals::Dir::OUTPUT);
w.set_drive(gpiovals::Drive::H0H1);
#[cfg(all(feature = "_nrf5340", feature = "_s"))]
w.set_mcusel(gpiovals::Mcusel::PERIPHERAL);
});
r.psel().$pin().write_value($pin.psel_bits());
};
}
config_pin!(sck);
config_pin!(csn);
config_pin!(io0);
config_pin!(io1);
config_pin!(io2);
config_pin!(io3);
r.ifconfig0().write(|w| {
w.set_addrmode(config.address_mode);
w.set_dpmenable(config.deep_power_down.is_some());
w.set_ppsize(config.write_page_size);
w.set_readoc(config.read_opcode);
w.set_writeoc(config.write_opcode);
});
if let Some(dpd) = &config.deep_power_down {
r.dpmdur().write(|w| {
w.set_enter(dpd.enter_time);
w.set_exit(dpd.exit_time);
})
}
r.ifconfig1().write(|w| {
w.set_sckdelay(config.sck_delay);
w.set_dpmen(false);
w.set_spimode(config.spi_mode);
w.set_sckfreq(config.frequency as u8);
});
r.iftiming().write(|w| {
w.set_rxdelay(config.rx_delay & 0b111);
});
r.xipoffset().write_value(config.xip_offset);
T::Interrupt::unpend();
unsafe { T::Interrupt::enable() };
// Enable it
r.enable().write(|w| w.set_enable(true));
let res = Self {
_peri: qspi,
dpm_enabled: config.deep_power_down.is_some(),
capacity: config.capacity,
};
r.events_ready().write_value(0);
r.intenset().write(|w| w.set_ready(true));
r.tasks_activate().write_value(1);
Self::blocking_wait_ready();
res
}
/// Do a custom QSPI instruction.
pub async fn custom_instruction(&mut self, opcode: u8, req: &[u8], resp: &mut [u8]) -> Result<(), Error> {
let ondrop = OnDrop::new(Self::blocking_wait_ready);
let len = core::cmp::max(req.len(), resp.len()) as u8;
self.custom_instruction_start(opcode, req, len)?;
self.wait_ready().await;
self.custom_instruction_finish(resp)?;
ondrop.defuse();
Ok(())
}
/// Do a custom QSPI instruction, blocking version.
pub fn blocking_custom_instruction(&mut self, opcode: u8, req: &[u8], resp: &mut [u8]) -> Result<(), Error> {
let len = core::cmp::max(req.len(), resp.len()) as u8;
self.custom_instruction_start(opcode, req, len)?;
Self::blocking_wait_ready();
self.custom_instruction_finish(resp)?;
Ok(())
}
fn custom_instruction_start(&mut self, opcode: u8, req: &[u8], len: u8) -> Result<(), Error> {
assert!(req.len() <= 8);
let mut dat0: u32 = 0;
let mut dat1: u32 = 0;
for i in 0..4 {
if i < req.len() {
dat0 |= (req[i] as u32) << (i * 8);
}
}
for i in 0..4 {
if i + 4 < req.len() {
dat1 |= (req[i + 4] as u32) << (i * 8);
}
}
let r = T::regs();
r.cinstrdat0().write(|w| w.0 = dat0);
r.cinstrdat1().write(|w| w.0 = dat1);
r.events_ready().write_value(0);
r.intenset().write(|w| w.set_ready(true));
r.cinstrconf().write(|w| {
w.set_opcode(opcode);
w.set_length(vals::Length::from_bits(len + 1));
w.set_lio2(true);
w.set_lio3(true);
w.set_wipwait(true);
w.set_wren(true);
w.set_lfen(false);
w.set_lfstop(false);
});
Ok(())
}
fn custom_instruction_finish(&mut self, resp: &mut [u8]) -> Result<(), Error> {
let r = T::regs();
let dat0 = r.cinstrdat0().read().0;
let dat1 = r.cinstrdat1().read().0;
for i in 0..4 {
if i < resp.len() {
resp[i] = (dat0 >> (i * 8)) as u8;
}
}
for i in 0..4 {
if i + 4 < resp.len() {
resp[i] = (dat1 >> (i * 8)) as u8;
}
}
Ok(())
}
fn wait_ready(&mut self) -> impl Future<Output = ()> {
poll_fn(move |cx| {
let r = T::regs();
let s = T::state();
s.waker.register(cx.waker());
if r.events_ready().read() != 0 {
return Poll::Ready(());
}
Poll::Pending
})
}
fn blocking_wait_ready() {
loop {
let r = T::regs();
if r.events_ready().read() != 0 {
break;
}
}
}
fn start_read(&mut self, address: u32, data: &mut [u8]) -> Result<(), Error> {
// TODO: Return these as errors instead.
assert_eq!(data.as_ptr() as u32 % 4, 0);
assert_eq!(data.len() as u32 % 4, 0);
assert_eq!(address % 4, 0);
let r = T::regs();
r.read().src().write_value(address);
r.read().dst().write_value(data.as_ptr() as u32);
r.read().cnt().write(|w| w.set_cnt(data.len() as u32));
r.events_ready().write_value(0);
r.intenset().write(|w| w.set_ready(true));
r.tasks_readstart().write_value(1);
Ok(())
}
fn start_write(&mut self, address: u32, data: &[u8]) -> Result<(), Error> {
// TODO: Return these as errors instead.
assert_eq!(data.as_ptr() as u32 % 4, 0);
assert_eq!(data.len() as u32 % 4, 0);
assert_eq!(address % 4, 0);
let r = T::regs();
r.write().src().write_value(data.as_ptr() as u32);
r.write().dst().write_value(address);
r.write().cnt().write(|w| w.set_cnt(data.len() as u32));
r.events_ready().write_value(0);
r.intenset().write(|w| w.set_ready(true));
r.tasks_writestart().write_value(1);
Ok(())
}
fn start_erase(&mut self, address: u32) -> Result<(), Error> {
// TODO: Return these as errors instead.
assert_eq!(address % 4096, 0);
let r = T::regs();
r.erase().ptr().write_value(address);
r.erase().len().write(|w| w.set_len(vals::Len::_4KB));
r.events_ready().write_value(0);
r.intenset().write(|w| w.set_ready(true));
r.tasks_erasestart().write_value(1);
Ok(())
}
/// Raw QSPI read.
///
/// The difference with `read` is that this does not do bounds checks
/// against the flash capacity. It is intended for use when QSPI is used as
/// a raw bus, not with flash memory.
pub async fn read_raw(&mut self, address: u32, data: &mut [u8]) -> Result<(), Error> {
// Avoid blocking_wait_ready() blocking forever on zero-length buffers.
if data.is_empty() {
return Ok(());
}
let ondrop = OnDrop::new(Self::blocking_wait_ready);
self.start_read(address, data)?;
self.wait_ready().await;
ondrop.defuse();
Ok(())
}
/// Raw QSPI write.
///
/// The difference with `write` is that this does not do bounds checks
/// against the flash capacity. It is intended for use when QSPI is used as
/// a raw bus, not with flash memory.
pub async fn write_raw(&mut self, address: u32, data: &[u8]) -> Result<(), Error> {
// Avoid blocking_wait_ready() blocking forever on zero-length buffers.
if data.is_empty() {
return Ok(());
}
let ondrop = OnDrop::new(Self::blocking_wait_ready);
self.start_write(address, data)?;
self.wait_ready().await;
ondrop.defuse();
Ok(())
}
/// Raw QSPI read, blocking version.
///
/// The difference with `blocking_read` is that this does not do bounds checks
/// against the flash capacity. It is intended for use when QSPI is used as
/// a raw bus, not with flash memory.
pub fn blocking_read_raw(&mut self, address: u32, data: &mut [u8]) -> Result<(), Error> {
// Avoid blocking_wait_ready() blocking forever on zero-length buffers.
if data.is_empty() {
return Ok(());
}
self.start_read(address, data)?;
Self::blocking_wait_ready();
Ok(())
}
/// Raw QSPI write, blocking version.
///
/// The difference with `blocking_write` is that this does not do bounds checks
/// against the flash capacity. It is intended for use when QSPI is used as
/// a raw bus, not with flash memory.
pub fn blocking_write_raw(&mut self, address: u32, data: &[u8]) -> Result<(), Error> {
// Avoid blocking_wait_ready() blocking forever on zero-length buffers.
if data.is_empty() {
return Ok(());
}
self.start_write(address, data)?;
Self::blocking_wait_ready();
Ok(())
}
/// Read data from the flash memory.
pub async fn read(&mut self, address: u32, data: &mut [u8]) -> Result<(), Error> {
self.bounds_check(address, data.len())?;
self.read_raw(address, data).await
}
/// Write data to the flash memory.
pub async fn write(&mut self, address: u32, data: &[u8]) -> Result<(), Error> {
self.bounds_check(address, data.len())?;
self.write_raw(address, data).await
}
/// Erase a sector on the flash memory.
pub async fn erase(&mut self, address: u32) -> Result<(), Error> {
if address >= self.capacity {
return Err(Error::OutOfBounds);
}
let ondrop = OnDrop::new(Self::blocking_wait_ready);
self.start_erase(address)?;
self.wait_ready().await;
ondrop.defuse();
Ok(())
}
/// Read data from the flash memory, blocking version.
pub fn blocking_read(&mut self, address: u32, data: &mut [u8]) -> Result<(), Error> {
self.bounds_check(address, data.len())?;
self.blocking_read_raw(address, data)
}
/// Write data to the flash memory, blocking version.
pub fn blocking_write(&mut self, address: u32, data: &[u8]) -> Result<(), Error> {
self.bounds_check(address, data.len())?;
self.blocking_write_raw(address, data)
}
/// Erase a sector on the flash memory, blocking version.
pub fn blocking_erase(&mut self, address: u32) -> Result<(), Error> {
if address >= self.capacity {
return Err(Error::OutOfBounds);
}
self.start_erase(address)?;
Self::blocking_wait_ready();
Ok(())
}
fn bounds_check(&self, address: u32, len: usize) -> Result<(), Error> {
let len_u32: u32 = len.try_into().map_err(|_| Error::OutOfBounds)?;
let end_address = address.checked_add(len_u32).ok_or(Error::OutOfBounds)?;
if end_address > self.capacity {
return Err(Error::OutOfBounds);
}
Ok(())
}
}
impl<'d, T: Instance> Drop for Qspi<'d, T> {
fn drop(&mut self) {
let r = T::regs();
if self.dpm_enabled {
trace!("qspi: doing deep powerdown...");
r.ifconfig1().modify(|w| w.set_dpmen(true));
// Wait for DPM enter.
// Unfortunately we must spin. There's no way to do this interrupt-driven.
// The READY event does NOT fire on DPM enter (but it does fire on DPM exit :shrug:)
while !r.status().read().dpm() {}
// Wait MORE for DPM enter.
// I have absolutely no idea why, but the wait above is not enough :'(
// Tested with mx25r64 in nrf52840-dk, and with mx25r16 in custom board
cortex_m::asm::delay(4096);
}
// it seems events_ready is not generated in response to deactivate. nrfx doesn't wait for it.
r.tasks_deactivate().write_value(1);
// Workaround https://docs.nordicsemi.com/bundle/errata_nRF52840_Rev3/page/ERR/nRF52840/Rev3/latest/anomaly_840_122.html
// Note that the doc has 2 register writes, but the first one is really the write to tasks_deactivate,
// so we only do the second one here.
unsafe { ptr::write_volatile(0x40029054 as *mut u32, 1) }
r.enable().write(|w| w.set_enable(false));
// Note: we do NOT deconfigure CSN here. If DPM is in use and we disconnect CSN,
// leaving it floating, the flash chip might read it as zero which would cause it to
// spuriously exit DPM.
gpio::deconfigure_pin(r.psel().sck().read());
gpio::deconfigure_pin(r.psel().io0().read());
gpio::deconfigure_pin(r.psel().io1().read());
gpio::deconfigure_pin(r.psel().io2().read());
gpio::deconfigure_pin(r.psel().io3().read());
trace!("qspi: dropped");
}
}
impl<'d, T: Instance> ErrorType for Qspi<'d, T> {
type Error = Error;
}
impl NorFlashError for Error {
fn kind(&self) -> NorFlashErrorKind {
NorFlashErrorKind::Other
}
}
impl<'d, T: Instance> ReadNorFlash for Qspi<'d, T> {
const READ_SIZE: usize = 4;
fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(offset, bytes)?;
Ok(())
}
fn capacity(&self) -> usize {
self.capacity as usize
}
}
impl<'d, T: Instance> NorFlash for Qspi<'d, T> {
const WRITE_SIZE: usize = 4;
const ERASE_SIZE: usize = 4096;
fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
for address in (from..to).step_by(<Self as NorFlash>::ERASE_SIZE) {
self.blocking_erase(address)?;
}
Ok(())
}
fn write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(offset, bytes)?;
Ok(())
}
}
#[cfg(feature = "qspi-multiwrite-flash")]
impl<'d, T: Instance> embedded_storage::nor_flash::MultiwriteNorFlash for Qspi<'d, T> {}
mod _eh1 {
use embedded_storage_async::nor_flash::{NorFlash as AsyncNorFlash, ReadNorFlash as AsyncReadNorFlash};
use super::*;
impl<'d, T: Instance> AsyncNorFlash for Qspi<'d, T> {
const WRITE_SIZE: usize = <Self as NorFlash>::WRITE_SIZE;
const ERASE_SIZE: usize = <Self as NorFlash>::ERASE_SIZE;
async fn write(&mut self, offset: u32, data: &[u8]) -> Result<(), Self::Error> {
self.write(offset, data).await
}
async fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
for address in (from..to).step_by(<Self as AsyncNorFlash>::ERASE_SIZE) {
self.erase(address).await?
}
Ok(())
}
}
impl<'d, T: Instance> AsyncReadNorFlash for Qspi<'d, T> {
const READ_SIZE: usize = 4;
async fn read(&mut self, address: u32, data: &mut [u8]) -> Result<(), Self::Error> {
self.read(address, data).await
}
fn capacity(&self) -> usize {
self.capacity as usize
}
}
#[cfg(feature = "qspi-multiwrite-flash")]
impl<'d, T: Instance> embedded_storage_async::nor_flash::MultiwriteNorFlash for Qspi<'d, T> {}
}
/// Peripheral static state
pub(crate) struct State {
waker: AtomicWaker,
}
impl State {
pub(crate) const fn new() -> Self {
Self {
waker: AtomicWaker::new(),
}
}
}
pub(crate) trait SealedInstance {
fn regs() -> pac::qspi::Qspi;
fn state() -> &'static State;
}
/// QSPI peripheral instance.
#[allow(private_bounds)]
pub trait Instance: Peripheral<P = Self> + SealedInstance + 'static + Send {
/// Interrupt for this peripheral.
type Interrupt: interrupt::typelevel::Interrupt;
}
macro_rules! impl_qspi {
($type:ident, $pac_type:ident, $irq:ident) => {
impl crate::qspi::SealedInstance for peripherals::$type {
fn regs() -> pac::qspi::Qspi {
pac::$pac_type
}
fn state() -> &'static crate::qspi::State {
static STATE: crate::qspi::State = crate::qspi::State::new();
&STATE
}
}
impl crate::qspi::Instance for peripherals::$type {
type Interrupt = crate::interrupt::typelevel::$irq;
}
};
}