2024-03-07 17:45:01 +10:00

991 lines
34 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//! Driver for the STM32 bxCAN peripheral.
//!
//! This crate provides a reusable driver for the bxCAN peripheral found in many low- to middle-end
//! STM32 microcontrollers. HALs for compatible chips can reexport this crate and implement its
//! traits to easily expose a featureful CAN driver.
//!
//! # Features
//!
//! - Supports both single- and dual-peripheral configurations (where one bxCAN instance manages the
//! filters of a secondary instance).
//! - Handles standard and extended frames, and data and remote frames.
//! - Support for interrupts emitted by the bxCAN peripheral.
//! - Transmission respects CAN IDs and protects against priority inversion (a lower-priority frame
//! may be dequeued when enqueueing a higher-priority one).
//! - Implements the [`embedded-hal`] traits for interoperability.
//! - Support for both RX FIFOs (as [`Rx0`] and [`Rx1`]).
//!
//! # Limitations
//!
//! - Support for querying error states and handling error interrupts is incomplete.
//!
// Deny a few warnings in doctests, since rustdoc `allow`s many warnings by default
#![allow(clippy::unnecessary_operation)] // lint is bugged
//mod embedded_hal;
pub mod filter;
mod frame;
mod id;
#[allow(clippy::all)] // generated code
mod pac;
use core::cmp::{Ord, Ordering};
use core::convert::{Infallible, TryInto};
use core::marker::PhantomData;
use core::mem;
use core::ptr::NonNull;
pub use id::{ExtendedId, Id, StandardId};
use self::pac::generic::*;
use crate::can::bx::filter::MasterFilters;
pub use crate::can::bx::frame::{Data, Frame, FramePriority};
pub use crate::can::bx::pac::can::RegisterBlock; // To make the PAC extraction build
/// A bxCAN peripheral instance.
///
/// This trait is meant to be implemented for a HAL-specific type that represent ownership of
/// the CAN peripheral (and any pins required by it, although that is entirely up to the HAL).
///
/// # Safety
///
/// It is only safe to implement this trait, when:
///
/// * The implementing type has ownership of the peripheral, preventing any other accesses to the
/// register block.
/// * `REGISTERS` is a pointer to that peripheral's register block and can be safely accessed for as
/// long as ownership or a borrow of the implementing type is present.
pub unsafe trait Instance {
/// Pointer to the instance's register block.
const REGISTERS: *mut RegisterBlock;
}
/// A bxCAN instance that owns filter banks.
///
/// In master-slave-instance setups, only the master instance owns the filter banks, and needs to
/// split some of them off for use by the slave instance. In that case, the master instance should
/// implement [`FilterOwner`] and [`MasterInstance`], while the slave instance should only implement
/// [`Instance`].
///
/// In single-instance configurations, the instance owns all filter banks and they can not be split
/// off. In that case, the instance should implement [`Instance`] and [`FilterOwner`].
///
/// # Safety
///
/// This trait must only be implemented if the instance does, in fact, own its associated filter
/// banks, and `NUM_FILTER_BANKS` must be correct.
pub unsafe trait FilterOwner: Instance {
/// The total number of filter banks available to the instance.
///
/// This is usually either 14 or 28, and should be specified in the chip's reference manual or
/// datasheet.
const NUM_FILTER_BANKS: u8;
}
/// A bxCAN master instance that shares filter banks with a slave instance.
///
/// In master-slave-instance setups, this trait should be implemented for the master instance.
///
/// # Safety
///
/// This trait must only be implemented when there is actually an associated slave instance.
pub unsafe trait MasterInstance: FilterOwner {}
// TODO: what to do with these?
/*
#[derive(Debug, Copy, Clone, Eq, PartialEq, Format)]
pub enum Error {
Stuff,
Form,
Acknowledgement,
BitRecessive,
BitDominant,
Crc,
Software,
}*/
/// Error that indicates that an incoming message has been lost due to buffer overrun.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub struct OverrunError {
_priv: (),
}
/// Identifier of a CAN message.
///
/// Can be either a standard identifier (11bit, Range: 0..0x3FF) or a
/// extendended identifier (29bit , Range: 0..0x1FFFFFFF).
///
/// The `Ord` trait can be used to determine the frames priority this ID
/// belongs to.
/// Lower identifier values have a higher priority. Additionally standard frames
/// have a higher priority than extended frames and data frames have a higher
/// priority than remote frames.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
struct IdReg(u32);
impl IdReg {
const STANDARD_SHIFT: u32 = 21;
const EXTENDED_SHIFT: u32 = 3;
const IDE_MASK: u32 = 0x0000_0004;
const RTR_MASK: u32 = 0x0000_0002;
/// Creates a new standard identifier (11bit, Range: 0..0x7FF)
///
/// Panics for IDs outside the allowed range.
fn new_standard(id: StandardId) -> Self {
Self(u32::from(id.as_raw()) << Self::STANDARD_SHIFT)
}
/// Creates a new extendended identifier (29bit , Range: 0..0x1FFFFFFF).
///
/// Panics for IDs outside the allowed range.
fn new_extended(id: ExtendedId) -> IdReg {
Self(id.as_raw() << Self::EXTENDED_SHIFT | Self::IDE_MASK)
}
fn from_register(reg: u32) -> IdReg {
Self(reg & 0xFFFF_FFFE)
}
/// Sets the remote transmission (RTR) flag. This marks the identifier as
/// being part of a remote frame.
#[must_use = "returns a new IdReg without modifying `self`"]
fn with_rtr(self, rtr: bool) -> IdReg {
if rtr {
Self(self.0 | Self::RTR_MASK)
} else {
Self(self.0 & !Self::RTR_MASK)
}
}
/// Returns the identifier.
fn to_id(self) -> Id {
if self.is_extended() {
Id::Extended(unsafe { ExtendedId::new_unchecked(self.0 >> Self::EXTENDED_SHIFT) })
} else {
Id::Standard(unsafe { StandardId::new_unchecked((self.0 >> Self::STANDARD_SHIFT) as u16) })
}
}
/// Returns `true` if the identifier is an extended identifier.
fn is_extended(self) -> bool {
self.0 & Self::IDE_MASK != 0
}
/// Returns `true` if the identifier is a standard identifier.
fn is_standard(self) -> bool {
!self.is_extended()
}
/// Returns `true` if the identifer is part of a remote frame (RTR bit set).
fn rtr(self) -> bool {
self.0 & Self::RTR_MASK != 0
}
}
/// `IdReg` is ordered by priority.
impl Ord for IdReg {
fn cmp(&self, other: &Self) -> Ordering {
// When the IDs match, data frames have priority over remote frames.
let rtr = self.rtr().cmp(&other.rtr()).reverse();
let id_a = self.to_id();
let id_b = other.to_id();
match (id_a, id_b) {
(Id::Standard(a), Id::Standard(b)) => {
// Lower IDs have priority over higher IDs.
a.as_raw().cmp(&b.as_raw()).reverse().then(rtr)
}
(Id::Extended(a), Id::Extended(b)) => a.as_raw().cmp(&b.as_raw()).reverse().then(rtr),
(Id::Standard(a), Id::Extended(b)) => {
// Standard frames have priority over extended frames if their Base IDs match.
a.as_raw()
.cmp(&b.standard_id().as_raw())
.reverse()
.then(Ordering::Greater)
}
(Id::Extended(a), Id::Standard(b)) => {
a.standard_id().as_raw().cmp(&b.as_raw()).reverse().then(Ordering::Less)
}
}
}
}
impl PartialOrd for IdReg {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
/// Configuration proxy returned by [`Can::modify_config`].
#[must_use = "`CanConfig` leaves the peripheral in uninitialized state, call `CanConfig::enable` or explicitly drop the value"]
pub struct CanConfig<'a, I: Instance> {
can: &'a mut Can<I>,
}
impl<I: Instance> CanConfig<'_, I> {
/// Configures the bit timings.
///
/// You can use <http://www.bittiming.can-wiki.info/> to calculate the `btr` parameter. Enter
/// parameters as follows:
///
/// - *Clock Rate*: The input clock speed to the CAN peripheral (*not* the CPU clock speed).
/// This is the clock rate of the peripheral bus the CAN peripheral is attached to (eg. APB1).
/// - *Sample Point*: Should normally be left at the default value of 87.5%.
/// - *SJW*: Should normally be left at the default value of 1.
///
/// Then copy the `CAN_BUS_TIME` register value from the table and pass it as the `btr`
/// parameter to this method.
pub fn set_bit_timing(self, btr: u32) -> Self {
self.can.set_bit_timing(btr);
self
}
/// Enables or disables loopback mode: Internally connects the TX and RX
/// signals together.
pub fn set_loopback(self, enabled: bool) -> Self {
let can = self.can.registers();
can.btr.modify(|_, w| w.lbkm().bit(enabled));
self
}
/// Enables or disables silent mode: Disconnects the TX signal from the pin.
pub fn set_silent(self, enabled: bool) -> Self {
let can = self.can.registers();
can.btr.modify(|_, w| w.silm().bit(enabled));
self
}
/// Enables or disables automatic retransmission of messages.
///
/// If this is enabled, the CAN peripheral will automatically try to retransmit each frame
/// until it can be sent. Otherwise, it will try only once to send each frame.
///
/// Automatic retransmission is enabled by default.
pub fn set_automatic_retransmit(self, enabled: bool) -> Self {
let can = self.can.registers();
can.mcr.modify(|_, w| w.nart().bit(!enabled));
self
}
/// Leaves initialization mode and enables the peripheral.
///
/// To sync with the CAN bus, this will block until 11 consecutive recessive bits are detected
/// on the bus.
///
/// If you want to finish configuration without enabling the peripheral, you can call
/// [`CanConfig::leave_disabled`] or [`drop`] the [`CanConfig`] instead.
pub fn enable(mut self) {
self.leave_init_mode();
match nb::block!(self.can.enable_non_blocking()) {
Ok(()) => {}
Err(void) => match void {},
}
// Don't run the destructor.
mem::forget(self);
}
/// Leaves initialization mode, but keeps the peripheral in sleep mode.
///
/// Before the [`Can`] instance can be used, you have to enable it by calling
/// [`Can::enable_non_blocking`].
pub fn leave_disabled(mut self) {
self.leave_init_mode();
}
/// Leaves initialization mode, enters sleep mode.
fn leave_init_mode(&mut self) {
let can = self.can.registers();
can.mcr.modify(|_, w| w.sleep().set_bit().inrq().clear_bit());
loop {
let msr = can.msr.read();
if msr.slak().bit_is_set() && msr.inak().bit_is_clear() {
break;
}
}
}
}
impl<I: Instance> Drop for CanConfig<'_, I> {
#[inline]
fn drop(&mut self) {
self.leave_init_mode();
}
}
/// Builder returned by [`Can::builder`].
#[must_use = "`CanBuilder` leaves the peripheral in uninitialized state, call `CanBuilder::enable` or `CanBuilder::leave_disabled`"]
pub struct CanBuilder<I: Instance> {
can: Can<I>,
}
impl<I: Instance> CanBuilder<I> {
/// Configures the bit timings.
///
/// You can use <http://www.bittiming.can-wiki.info/> to calculate the `btr` parameter. Enter
/// parameters as follows:
///
/// - *Clock Rate*: The input clock speed to the CAN peripheral (*not* the CPU clock speed).
/// This is the clock rate of the peripheral bus the CAN peripheral is attached to (eg. APB1).
/// - *Sample Point*: Should normally be left at the default value of 87.5%.
/// - *SJW*: Should normally be left at the default value of 1.
///
/// Then copy the `CAN_BUS_TIME` register value from the table and pass it as the `btr`
/// parameter to this method.
pub fn set_bit_timing(mut self, btr: u32) -> Self {
self.can.set_bit_timing(btr);
self
}
/// Enables or disables loopback mode: Internally connects the TX and RX
/// signals together.
pub fn set_loopback(self, enabled: bool) -> Self {
let can = self.can.registers();
can.btr.modify(|_, w| w.lbkm().bit(enabled));
self
}
/// Enables or disables silent mode: Disconnects the TX signal from the pin.
pub fn set_silent(self, enabled: bool) -> Self {
let can = self.can.registers();
can.btr.modify(|_, w| w.silm().bit(enabled));
self
}
/// Enables or disables automatic retransmission of messages.
///
/// If this is enabled, the CAN peripheral will automatically try to retransmit each frame
/// until it can be sent. Otherwise, it will try only once to send each frame.
///
/// Automatic retransmission is enabled by default.
pub fn set_automatic_retransmit(self, enabled: bool) -> Self {
let can = self.can.registers();
can.mcr.modify(|_, w| w.nart().bit(!enabled));
self
}
/// Leaves initialization mode and enables the peripheral.
///
/// To sync with the CAN bus, this will block until 11 consecutive recessive bits are detected
/// on the bus.
///
/// If you want to finish configuration without enabling the peripheral, you can call
/// [`CanBuilder::leave_disabled`] instead.
pub fn enable(mut self) -> Can<I> {
self.leave_init_mode();
match nb::block!(self.can.enable_non_blocking()) {
Ok(()) => self.can,
Err(void) => match void {},
}
}
/// Returns the [`Can`] interface without enabling it.
///
/// This leaves initialization mode, but keeps the peripheral in sleep mode instead of enabling
/// it.
///
/// Before the [`Can`] instance can be used, you have to enable it by calling
/// [`Can::enable_non_blocking`].
pub fn leave_disabled(mut self) -> Can<I> {
self.leave_init_mode();
self.can
}
/// Leaves initialization mode, enters sleep mode.
fn leave_init_mode(&mut self) {
let can = self.can.registers();
can.mcr.modify(|_, w| w.sleep().set_bit().inrq().clear_bit());
loop {
let msr = can.msr.read();
if msr.slak().bit_is_set() && msr.inak().bit_is_clear() {
break;
}
}
}
}
/// Interface to a bxCAN peripheral.
pub struct Can<I: Instance> {
instance: I,
}
impl<I> Can<I>
where
I: Instance,
{
/// Creates a [`CanBuilder`] for constructing a CAN interface.
pub fn builder(instance: I) -> CanBuilder<I> {
let can_builder = CanBuilder { can: Can { instance } };
let can_reg = can_builder.can.registers();
// Enter init mode.
can_reg.mcr.modify(|_, w| w.sleep().clear_bit().inrq().set_bit());
loop {
let msr = can_reg.msr.read();
if msr.slak().bit_is_clear() && msr.inak().bit_is_set() {
break;
}
}
can_builder
}
fn registers(&self) -> &RegisterBlock {
unsafe { &*I::REGISTERS }
}
fn set_bit_timing(&mut self, btr: u32) {
// Mask of all non-reserved BTR bits, except the mode flags.
const MASK: u32 = 0x037F_03FF;
let can = self.registers();
can.btr.modify(|r, w| unsafe {
let mode_bits = r.bits() & 0xC000_0000;
w.bits(mode_bits | (btr & MASK))
});
}
/// Returns a reference to the peripheral instance.
///
/// This allows accessing HAL-specific data stored in the instance type.
pub fn instance(&mut self) -> &mut I {
&mut self.instance
}
/// Disables the CAN interface and returns back the raw peripheral it was created from.
///
/// The peripheral is disabled by setting `RESET` in `CAN_MCR`, which causes the peripheral to
/// enter sleep mode.
pub fn free(self) -> I {
self.registers().mcr.write(|w| w.reset().set_bit());
self.instance
}
/// Configure bit timings and silent/loop-back mode.
///
/// Calling this method will enter initialization mode.
pub fn modify_config(&mut self) -> CanConfig<'_, I> {
let can = self.registers();
// Enter init mode.
can.mcr.modify(|_, w| w.sleep().clear_bit().inrq().set_bit());
loop {
let msr = can.msr.read();
if msr.slak().bit_is_clear() && msr.inak().bit_is_set() {
break;
}
}
CanConfig { can: self }
}
/// Configures the automatic wake-up feature.
///
/// This is turned off by default.
///
/// When turned on, an incoming frame will cause the peripheral to wake up from sleep and
/// receive the frame. If enabled, [`Interrupt::Wakeup`] will also be triggered by the incoming
/// frame.
pub fn set_automatic_wakeup(&mut self, enabled: bool) {
let can = self.registers();
can.mcr.modify(|_, w| w.awum().bit(enabled));
}
/// Leaves initialization mode and enables the peripheral (non-blocking version).
///
/// Usually, it is recommended to call [`CanConfig::enable`] instead. This method is only needed
/// if you want non-blocking initialization.
///
/// If this returns [`WouldBlock`][nb::Error::WouldBlock], the peripheral will enable itself
/// in the background. The peripheral is enabled and ready to use when this method returns
/// successfully.
pub fn enable_non_blocking(&mut self) -> nb::Result<(), Infallible> {
let can = self.registers();
let msr = can.msr.read();
if msr.slak().bit_is_set() {
can.mcr.modify(|_, w| w.abom().set_bit().sleep().clear_bit());
Err(nb::Error::WouldBlock)
} else {
Ok(())
}
}
/// Puts the peripheral in a sleep mode to save power.
///
/// While in sleep mode, an incoming CAN frame will trigger [`Interrupt::Wakeup`] if enabled.
pub fn sleep(&mut self) {
let can = self.registers();
can.mcr.modify(|_, w| w.sleep().set_bit().inrq().clear_bit());
loop {
let msr = can.msr.read();
if msr.slak().bit_is_set() && msr.inak().bit_is_clear() {
break;
}
}
}
/// Wakes up from sleep mode.
///
/// Note that this will not trigger [`Interrupt::Wakeup`], only reception of an incoming CAN
/// frame will cause that interrupt.
pub fn wakeup(&mut self) {
let can = self.registers();
can.mcr.modify(|_, w| w.sleep().clear_bit().inrq().clear_bit());
loop {
let msr = can.msr.read();
if msr.slak().bit_is_clear() && msr.inak().bit_is_clear() {
break;
}
}
}
/// Puts a CAN frame in a free transmit mailbox for transmission on the bus.
///
/// Frames are transmitted to the bus based on their priority (see [`FramePriority`]).
/// Transmit order is preserved for frames with identical priority.
///
/// If all transmit mailboxes are full, and `frame` has a higher priority than the
/// lowest-priority message in the transmit mailboxes, transmission of the enqueued frame is
/// cancelled and `frame` is enqueued instead. The frame that was replaced is returned as
/// [`TransmitStatus::dequeued_frame`].
pub fn transmit(&mut self, frame: &Frame) -> nb::Result<TransmitStatus, Infallible> {
// Safety: We have a `&mut self` and have unique access to the peripheral.
unsafe { Tx::<I>::conjure().transmit(frame) }
}
/// Returns `true` if no frame is pending for transmission.
pub fn is_transmitter_idle(&self) -> bool {
// Safety: Read-only operation.
unsafe { Tx::<I>::conjure().is_idle() }
}
/// Attempts to abort the sending of a frame that is pending in a mailbox.
///
/// If there is no frame in the provided mailbox, or its transmission succeeds before it can be
/// aborted, this function has no effect and returns `false`.
///
/// If there is a frame in the provided mailbox, and it is canceled successfully, this function
/// returns `true`.
pub fn abort(&mut self, mailbox: Mailbox) -> bool {
// Safety: We have a `&mut self` and have unique access to the peripheral.
unsafe { Tx::<I>::conjure().abort(mailbox) }
}
/// Returns a received frame if available.
///
/// This will first check FIFO 0 for a message or error. If none are available, FIFO 1 is
/// checked.
///
/// Returns `Err` when a frame was lost due to buffer overrun.
pub fn receive(&mut self) -> nb::Result<Frame, OverrunError> {
// Safety: We have a `&mut self` and have unique access to the peripheral.
let mut rx0 = unsafe { Rx0::<I>::conjure() };
let mut rx1 = unsafe { Rx1::<I>::conjure() };
match rx0.receive() {
Err(nb::Error::WouldBlock) => rx1.receive(),
result => result,
}
}
/// Returns a reference to the RX FIFO 0.
pub fn rx0(&mut self) -> &mut Rx0<I> {
// Safety: We take `&mut self` and the return value lifetimes are tied to `self`'s lifetime.
unsafe { Rx0::conjure_by_ref() }
}
/// Returns a reference to the RX FIFO 1.
pub fn rx1(&mut self) -> &mut Rx1<I> {
// Safety: We take `&mut self` and the return value lifetimes are tied to `self`'s lifetime.
unsafe { Rx1::conjure_by_ref() }
}
/// Splits this `Can` instance into transmitting and receiving halves, by reference.
pub fn split_by_ref(&mut self) -> (&mut Tx<I>, &mut Rx0<I>, &mut Rx1<I>) {
// Safety: We take `&mut self` and the return value lifetimes are tied to `self`'s lifetime.
let tx = unsafe { Tx::conjure_by_ref() };
let rx0 = unsafe { Rx0::conjure_by_ref() };
let rx1 = unsafe { Rx1::conjure_by_ref() };
(tx, rx0, rx1)
}
/// Consumes this `Can` instance and splits it into transmitting and receiving halves.
pub fn split(self) -> (Tx<I>, Rx0<I>, Rx1<I>) {
// Safety: `Self` is not `Copy` and is destroyed by moving it into this method.
unsafe { (Tx::conjure(), Rx0::conjure(), Rx1::conjure()) }
}
}
impl<I: FilterOwner> Can<I> {
/// Accesses the filter banks owned by this CAN peripheral.
///
/// To modify filters of a slave peripheral, `modify_filters` has to be called on the master
/// peripheral instead.
pub fn modify_filters(&mut self) -> MasterFilters<'_, I> {
unsafe { MasterFilters::new() }
}
}
/// Interface to the CAN transmitter part.
pub struct Tx<I> {
_can: PhantomData<I>,
}
#[inline]
const fn ok_mask(idx: usize) -> u32 {
0x02 << (8 * idx)
}
#[inline]
const fn abort_mask(idx: usize) -> u32 {
0x80 << (8 * idx)
}
impl<I> Tx<I>
where
I: Instance,
{
unsafe fn conjure() -> Self {
Self { _can: PhantomData }
}
/// Creates a `&mut Self` out of thin air.
///
/// This is only safe if it is the only way to access a `Tx<I>`.
unsafe fn conjure_by_ref<'a>() -> &'a mut Self {
// Cause out of bounds access when `Self` is not zero-sized.
[()][core::mem::size_of::<Self>()];
// Any aligned pointer is valid for ZSTs.
&mut *NonNull::dangling().as_ptr()
}
fn registers(&self) -> &RegisterBlock {
unsafe { &*I::REGISTERS }
}
/// Puts a CAN frame in a transmit mailbox for transmission on the bus.
///
/// Frames are transmitted to the bus based on their priority (see [`FramePriority`]).
/// Transmit order is preserved for frames with identical priority.
///
/// If all transmit mailboxes are full, and `frame` has a higher priority than the
/// lowest-priority message in the transmit mailboxes, transmission of the enqueued frame is
/// cancelled and `frame` is enqueued instead. The frame that was replaced is returned as
/// [`TransmitStatus::dequeued_frame`].
pub fn transmit(&mut self, frame: &Frame) -> nb::Result<TransmitStatus, Infallible> {
let can = self.registers();
// Get the index of the next free mailbox or the one with the lowest priority.
let tsr = can.tsr.read();
let idx = tsr.code().bits() as usize;
let frame_is_pending = tsr.tme0().bit_is_clear() || tsr.tme1().bit_is_clear() || tsr.tme2().bit_is_clear();
let pending_frame = if frame_is_pending {
// High priority frames are transmitted first by the mailbox system.
// Frames with identical identifier shall be transmitted in FIFO order.
// The controller schedules pending frames of same priority based on the
// mailbox index instead. As a workaround check all pending mailboxes
// and only accept higher priority frames.
self.check_priority(0, frame.id)?;
self.check_priority(1, frame.id)?;
self.check_priority(2, frame.id)?;
let all_frames_are_pending =
tsr.tme0().bit_is_clear() && tsr.tme1().bit_is_clear() && tsr.tme2().bit_is_clear();
if all_frames_are_pending {
// No free mailbox is available. This can only happen when three frames with
// ascending priority (descending IDs) were requested for transmission and all
// of them are blocked by bus traffic with even higher priority.
// To prevent a priority inversion abort and replace the lowest priority frame.
self.read_pending_mailbox(idx)
} else {
// There was a free mailbox.
None
}
} else {
// All mailboxes are available: Send frame without performing any checks.
None
};
self.write_mailbox(idx, frame);
let mailbox = match idx {
0 => Mailbox::Mailbox0,
1 => Mailbox::Mailbox1,
2 => Mailbox::Mailbox2,
_ => unreachable!(),
};
Ok(TransmitStatus {
dequeued_frame: pending_frame,
mailbox,
})
}
/// Returns `Ok` when the mailbox is free or if it contains pending frame with a
/// lower priority (higher ID) than the identifier `id`.
fn check_priority(&self, idx: usize, id: IdReg) -> nb::Result<(), Infallible> {
let can = self.registers();
// Read the pending frame's id to check its priority.
assert!(idx < 3);
let tir = &can.tx[idx].tir.read();
// Check the priority by comparing the identifiers. But first make sure the
// frame has not finished the transmission (`TXRQ` == 0) in the meantime.
if tir.txrq().bit_is_set() && id <= IdReg::from_register(tir.bits()) {
// There's a mailbox whose priority is higher or equal
// the priority of the new frame.
return Err(nb::Error::WouldBlock);
}
Ok(())
}
fn write_mailbox(&mut self, idx: usize, frame: &Frame) {
let can = self.registers();
debug_assert!(idx < 3);
let mb = unsafe { &can.tx.get_unchecked(idx) };
mb.tdtr.write(|w| unsafe { w.dlc().bits(frame.dlc() as u8) });
mb.tdlr
.write(|w| unsafe { w.bits(u32::from_ne_bytes(frame.data.bytes[0..4].try_into().unwrap())) });
mb.tdhr
.write(|w| unsafe { w.bits(u32::from_ne_bytes(frame.data.bytes[4..8].try_into().unwrap())) });
mb.tir.write(|w| unsafe { w.bits(frame.id.0).txrq().set_bit() });
}
fn read_pending_mailbox(&mut self, idx: usize) -> Option<Frame> {
if self.abort_by_index(idx) {
let can = self.registers();
debug_assert!(idx < 3);
let mb = unsafe { &can.tx.get_unchecked(idx) };
// Read back the pending frame.
let mut pending_frame = Frame {
id: IdReg(mb.tir.read().bits()),
data: Data::empty(),
};
pending_frame.data.bytes[0..4].copy_from_slice(&mb.tdlr.read().bits().to_ne_bytes());
pending_frame.data.bytes[4..8].copy_from_slice(&mb.tdhr.read().bits().to_ne_bytes());
pending_frame.data.len = mb.tdtr.read().dlc().bits();
Some(pending_frame)
} else {
// Abort request failed because the frame was already sent (or being sent) on
// the bus. All mailboxes are now free. This can happen for small prescaler
// values (e.g. 1MBit/s bit timing with a source clock of 8MHz) or when an ISR
// has preempted the execution.
None
}
}
/// Tries to abort a pending frame. Returns `true` when aborted.
fn abort_by_index(&mut self, idx: usize) -> bool {
let can = self.registers();
can.tsr.write(|w| unsafe { w.bits(abort_mask(idx)) });
// Wait for the abort request to be finished.
loop {
let tsr = can.tsr.read().bits();
if tsr & abort_mask(idx) == 0 {
break tsr & ok_mask(idx) == 0;
}
}
}
/// Attempts to abort the sending of a frame that is pending in a mailbox.
///
/// If there is no frame in the provided mailbox, or its transmission succeeds before it can be
/// aborted, this function has no effect and returns `false`.
///
/// If there is a frame in the provided mailbox, and it is canceled successfully, this function
/// returns `true`.
pub fn abort(&mut self, mailbox: Mailbox) -> bool {
// If the mailbox is empty, the value of TXOKx depends on what happened with the previous
// frame in that mailbox. Only call abort_by_index() if the mailbox is not empty.
let tsr = self.registers().tsr.read();
let mailbox_empty = match mailbox {
Mailbox::Mailbox0 => tsr.tme0().bit_is_set(),
Mailbox::Mailbox1 => tsr.tme1().bit_is_set(),
Mailbox::Mailbox2 => tsr.tme2().bit_is_set(),
};
if mailbox_empty {
false
} else {
self.abort_by_index(mailbox as usize)
}
}
/// Returns `true` if no frame is pending for transmission.
pub fn is_idle(&self) -> bool {
let can = self.registers();
let tsr = can.tsr.read();
tsr.tme0().bit_is_set() && tsr.tme1().bit_is_set() && tsr.tme2().bit_is_set()
}
/// Clears the request complete flag for all mailboxes.
pub fn clear_interrupt_flags(&mut self) {
let can = self.registers();
can.tsr
.write(|w| w.rqcp2().set_bit().rqcp1().set_bit().rqcp0().set_bit());
}
}
/// Interface to receiver FIFO 0.
pub struct Rx0<I> {
_can: PhantomData<I>,
}
impl<I> Rx0<I>
where
I: Instance,
{
unsafe fn conjure() -> Self {
Self { _can: PhantomData }
}
/// Creates a `&mut Self` out of thin air.
///
/// This is only safe if it is the only way to access an `Rx<I>`.
unsafe fn conjure_by_ref<'a>() -> &'a mut Self {
// Cause out of bounds access when `Self` is not zero-sized.
[()][core::mem::size_of::<Self>()];
// Any aligned pointer is valid for ZSTs.
&mut *NonNull::dangling().as_ptr()
}
/// Returns a received frame if available.
///
/// Returns `Err` when a frame was lost due to buffer overrun.
pub fn receive(&mut self) -> nb::Result<Frame, OverrunError> {
receive_fifo(self.registers(), 0)
}
fn registers(&self) -> &RegisterBlock {
unsafe { &*I::REGISTERS }
}
}
/// Interface to receiver FIFO 1.
pub struct Rx1<I> {
_can: PhantomData<I>,
}
impl<I> Rx1<I>
where
I: Instance,
{
unsafe fn conjure() -> Self {
Self { _can: PhantomData }
}
/// Creates a `&mut Self` out of thin air.
///
/// This is only safe if it is the only way to access an `Rx<I>`.
unsafe fn conjure_by_ref<'a>() -> &'a mut Self {
// Cause out of bounds access when `Self` is not zero-sized.
[()][core::mem::size_of::<Self>()];
// Any aligned pointer is valid for ZSTs.
&mut *NonNull::dangling().as_ptr()
}
/// Returns a received frame if available.
///
/// Returns `Err` when a frame was lost due to buffer overrun.
pub fn receive(&mut self) -> nb::Result<Frame, OverrunError> {
receive_fifo(self.registers(), 1)
}
fn registers(&self) -> &RegisterBlock {
unsafe { &*I::REGISTERS }
}
}
fn receive_fifo(can: &RegisterBlock, fifo_nr: usize) -> nb::Result<Frame, OverrunError> {
assert!(fifo_nr < 2);
let rfr = &can.rfr[fifo_nr];
let rx = &can.rx[fifo_nr];
// Check if a frame is available in the mailbox.
let rfr_read = rfr.read();
if rfr_read.fmp().bits() == 0 {
return Err(nb::Error::WouldBlock);
}
// Check for RX FIFO overrun.
if rfr_read.fovr().bit_is_set() {
rfr.write(|w| w.fovr().set_bit());
return Err(nb::Error::Other(OverrunError { _priv: () }));
}
// Read the frame.
let mut frame = Frame {
id: IdReg(rx.rir.read().bits()),
data: [0; 8].into(),
};
frame.data[0..4].copy_from_slice(&rx.rdlr.read().bits().to_ne_bytes());
frame.data[4..8].copy_from_slice(&rx.rdhr.read().bits().to_ne_bytes());
frame.data.len = rx.rdtr.read().dlc().bits();
// Release the mailbox.
rfr.write(|w| w.rfom().set_bit());
Ok(frame)
}
/// Identifies one of the two receive FIFOs.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Fifo {
Fifo0 = 0,
Fifo1 = 1,
}
/// Identifies one of the three transmit mailboxes.
#[derive(Debug, Copy, Clone, Ord, PartialOrd, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Mailbox {
/// Transmit mailbox 0
Mailbox0 = 0,
/// Transmit mailbox 1
Mailbox1 = 1,
/// Transmit mailbox 2
Mailbox2 = 2,
}
/// Contains information about a frame enqueued for transmission via [`Can::transmit`] or
/// [`Tx::transmit`].
pub struct TransmitStatus {
dequeued_frame: Option<Frame>,
mailbox: Mailbox,
}
impl TransmitStatus {
/// Returns the lower-priority frame that was dequeued to make space for the new frame.
#[inline]
pub fn dequeued_frame(&self) -> Option<&Frame> {
self.dequeued_frame.as_ref()
}
/// Returns the [`Mailbox`] the frame was enqueued in.
#[inline]
pub fn mailbox(&self) -> Mailbox {
self.mailbox
}
}