- Move typelevel interrupts to a special-purpose mod: `embassy_xx::interrupt::typelevel`. - Reexport the PAC interrupt enum in `embassy_xx::interrupt`. This has a few advantages: - The `embassy_xx::interrupt` module is now more "standard". - It works with `cortex-m` functions for manipulating interrupts, for example. - It works with RTIC. - the interrupt enum allows holding value that can be "any interrupt at runtime", this can't be done with typelevel irqs. - When "const-generics on enums" is stable, we can remove the typelevel interrupts without disruptive changes to `embassy_xx::interrupt`.
		
			
				
	
	
		
			333 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			333 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| use core::cell::Cell;
 | |
| use core::convert::TryInto;
 | |
| use core::sync::atomic::{compiler_fence, Ordering};
 | |
| use core::{mem, ptr};
 | |
| 
 | |
| use atomic_polyfill::{AtomicU32, AtomicU8};
 | |
| use critical_section::CriticalSection;
 | |
| use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
 | |
| use embassy_sync::blocking_mutex::Mutex;
 | |
| use embassy_time::driver::{AlarmHandle, Driver};
 | |
| use embassy_time::TICK_HZ;
 | |
| use stm32_metapac::timer::regs;
 | |
| 
 | |
| use crate::interrupt::typelevel::Interrupt;
 | |
| use crate::pac::timer::vals;
 | |
| use crate::rcc::sealed::RccPeripheral;
 | |
| use crate::timer::sealed::{Basic16bitInstance as BasicInstance, GeneralPurpose16bitInstance as Instance};
 | |
| use crate::{interrupt, peripherals};
 | |
| 
 | |
| #[cfg(not(any(time_driver_tim12, time_driver_tim15)))]
 | |
| const ALARM_COUNT: usize = 3;
 | |
| 
 | |
| #[cfg(any(time_driver_tim12, time_driver_tim15))]
 | |
| const ALARM_COUNT: usize = 1;
 | |
| 
 | |
| #[cfg(time_driver_tim2)]
 | |
| type T = peripherals::TIM2;
 | |
| #[cfg(time_driver_tim3)]
 | |
| type T = peripherals::TIM3;
 | |
| #[cfg(time_driver_tim4)]
 | |
| type T = peripherals::TIM4;
 | |
| #[cfg(time_driver_tim5)]
 | |
| type T = peripherals::TIM5;
 | |
| 
 | |
| #[cfg(time_driver_tim12)]
 | |
| type T = peripherals::TIM12;
 | |
| #[cfg(time_driver_tim15)]
 | |
| type T = peripherals::TIM15;
 | |
| 
 | |
| foreach_interrupt! {
 | |
|     (TIM2, timer, $block:ident, UP, $irq:ident) => {
 | |
|         #[cfg(time_driver_tim2)]
 | |
|         #[interrupt]
 | |
|         fn $irq() {
 | |
|             DRIVER.on_interrupt()
 | |
|         }
 | |
|     };
 | |
|     (TIM3, timer, $block:ident, UP, $irq:ident) => {
 | |
|         #[cfg(time_driver_tim3)]
 | |
|         #[interrupt]
 | |
|         fn $irq() {
 | |
|             DRIVER.on_interrupt()
 | |
|         }
 | |
|     };
 | |
|     (TIM4, timer, $block:ident, UP, $irq:ident) => {
 | |
|         #[cfg(time_driver_tim4)]
 | |
|         #[interrupt]
 | |
|         fn $irq() {
 | |
|             DRIVER.on_interrupt()
 | |
|         }
 | |
|     };
 | |
|     (TIM5, timer, $block:ident, UP, $irq:ident) => {
 | |
|         #[cfg(time_driver_tim5)]
 | |
|         #[interrupt]
 | |
|         fn $irq() {
 | |
|             DRIVER.on_interrupt()
 | |
|         }
 | |
|     };
 | |
|     (TIM12, timer, $block:ident, UP, $irq:ident) => {
 | |
|         #[cfg(time_driver_tim12)]
 | |
|         #[interrupt]
 | |
|         fn $irq() {
 | |
|             DRIVER.on_interrupt()
 | |
|         }
 | |
|     };
 | |
|     (TIM15, timer, $block:ident, UP, $irq:ident) => {
 | |
|         #[cfg(time_driver_tim15)]
 | |
|         #[interrupt]
 | |
|         fn $irq() {
 | |
|             DRIVER.on_interrupt()
 | |
|         }
 | |
|     };
 | |
| }
 | |
| 
 | |
| // Clock timekeeping works with something we call "periods", which are time intervals
 | |
| // of 2^15 ticks. The Clock counter value is 16 bits, so one "overflow cycle" is 2 periods.
 | |
| //
 | |
| // A `period` count is maintained in parallel to the Timer hardware `counter`, like this:
 | |
| // - `period` and `counter` start at 0
 | |
| // - `period` is incremented on overflow (at counter value 0)
 | |
| // - `period` is incremented "midway" between overflows (at counter value 0x8000)
 | |
| //
 | |
| // Therefore, when `period` is even, counter is in 0..0x7FFF. When odd, counter is in 0x8000..0xFFFF
 | |
| // This allows for now() to return the correct value even if it races an overflow.
 | |
| //
 | |
| // To get `now()`, `period` is read first, then `counter` is read. If the counter value matches
 | |
| // the expected range for the `period` parity, we're done. If it doesn't, this means that
 | |
| // a new period start has raced us between reading `period` and `counter`, so we assume the `counter` value
 | |
| // corresponds to the next period.
 | |
| //
 | |
| // `period` is a 32bit integer, so It overflows on 2^32 * 2^15 / 32768 seconds of uptime, which is 136 years.
 | |
| fn calc_now(period: u32, counter: u16) -> u64 {
 | |
|     ((period as u64) << 15) + ((counter as u32 ^ ((period & 1) << 15)) as u64)
 | |
| }
 | |
| 
 | |
| struct AlarmState {
 | |
|     timestamp: Cell<u64>,
 | |
| 
 | |
|     // This is really a Option<(fn(*mut ()), *mut ())>
 | |
|     // but fn pointers aren't allowed in const yet
 | |
|     callback: Cell<*const ()>,
 | |
|     ctx: Cell<*mut ()>,
 | |
| }
 | |
| 
 | |
| unsafe impl Send for AlarmState {}
 | |
| 
 | |
| impl AlarmState {
 | |
|     const fn new() -> Self {
 | |
|         Self {
 | |
|             timestamp: Cell::new(u64::MAX),
 | |
|             callback: Cell::new(ptr::null()),
 | |
|             ctx: Cell::new(ptr::null_mut()),
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| struct RtcDriver {
 | |
|     /// Number of 2^15 periods elapsed since boot.
 | |
|     period: AtomicU32,
 | |
|     alarm_count: AtomicU8,
 | |
|     /// Timestamp at which to fire alarm. u64::MAX if no alarm is scheduled.
 | |
|     alarms: Mutex<CriticalSectionRawMutex, [AlarmState; ALARM_COUNT]>,
 | |
| }
 | |
| 
 | |
| const ALARM_STATE_NEW: AlarmState = AlarmState::new();
 | |
| 
 | |
| embassy_time::time_driver_impl!(static DRIVER: RtcDriver = RtcDriver {
 | |
|     period: AtomicU32::new(0),
 | |
|     alarm_count: AtomicU8::new(0),
 | |
|     alarms: Mutex::const_new(CriticalSectionRawMutex::new(), [ALARM_STATE_NEW; ALARM_COUNT]),
 | |
| });
 | |
| 
 | |
| impl RtcDriver {
 | |
|     fn init(&'static self) {
 | |
|         let r = T::regs_gp16();
 | |
| 
 | |
|         <T as RccPeripheral>::enable();
 | |
|         <T as RccPeripheral>::reset();
 | |
| 
 | |
|         let timer_freq = T::frequency();
 | |
| 
 | |
|         // NOTE(unsafe) Critical section to use the unsafe methods
 | |
|         critical_section::with(|_| unsafe {
 | |
|             r.cr1().modify(|w| w.set_cen(false));
 | |
|             r.cnt().write(|w| w.set_cnt(0));
 | |
| 
 | |
|             let psc = timer_freq.0 / TICK_HZ as u32 - 1;
 | |
|             let psc: u16 = match psc.try_into() {
 | |
|                 Err(_) => panic!("psc division overflow: {}", psc),
 | |
|                 Ok(n) => n,
 | |
|             };
 | |
| 
 | |
|             r.psc().write(|w| w.set_psc(psc));
 | |
|             r.arr().write(|w| w.set_arr(u16::MAX));
 | |
| 
 | |
|             // Set URS, generate update and clear URS
 | |
|             r.cr1().modify(|w| w.set_urs(vals::Urs::COUNTERONLY));
 | |
|             r.egr().write(|w| w.set_ug(true));
 | |
|             r.cr1().modify(|w| w.set_urs(vals::Urs::ANYEVENT));
 | |
| 
 | |
|             // Mid-way point
 | |
|             r.ccr(0).write(|w| w.set_ccr(0x8000));
 | |
| 
 | |
|             // Enable overflow and half-overflow interrupts
 | |
|             r.dier().write(|w| {
 | |
|                 w.set_uie(true);
 | |
|                 w.set_ccie(0, true);
 | |
|             });
 | |
| 
 | |
|             <T as BasicInstance>::Interrupt::unpend();
 | |
|             <T as BasicInstance>::Interrupt::enable();
 | |
| 
 | |
|             r.cr1().modify(|w| w.set_cen(true));
 | |
|         })
 | |
|     }
 | |
| 
 | |
|     fn on_interrupt(&self) {
 | |
|         let r = T::regs_gp16();
 | |
| 
 | |
|         // NOTE(unsafe) Use critical section to access the methods
 | |
|         // XXX: reduce the size of this critical section ?
 | |
|         critical_section::with(|cs| unsafe {
 | |
|             let sr = r.sr().read();
 | |
|             let dier = r.dier().read();
 | |
| 
 | |
|             // Clear all interrupt flags. Bits in SR are "write 0 to clear", so write the bitwise NOT.
 | |
|             // Other approaches such as writing all zeros, or RMWing won't work, they can
 | |
|             // miss interrupts.
 | |
|             r.sr().write_value(regs::SrGp(!sr.0));
 | |
| 
 | |
|             // Overflow
 | |
|             if sr.uif() {
 | |
|                 self.next_period();
 | |
|             }
 | |
| 
 | |
|             // Half overflow
 | |
|             if sr.ccif(0) {
 | |
|                 self.next_period();
 | |
|             }
 | |
| 
 | |
|             for n in 0..ALARM_COUNT {
 | |
|                 if sr.ccif(n + 1) && dier.ccie(n + 1) {
 | |
|                     self.trigger_alarm(n, cs);
 | |
|                 }
 | |
|             }
 | |
|         })
 | |
|     }
 | |
| 
 | |
|     fn next_period(&self) {
 | |
|         let r = T::regs_gp16();
 | |
| 
 | |
|         let period = self.period.fetch_add(1, Ordering::Relaxed) + 1;
 | |
|         let t = (period as u64) << 15;
 | |
| 
 | |
|         critical_section::with(move |cs| unsafe {
 | |
|             r.dier().modify(move |w| {
 | |
|                 for n in 0..ALARM_COUNT {
 | |
|                     let alarm = &self.alarms.borrow(cs)[n];
 | |
|                     let at = alarm.timestamp.get();
 | |
| 
 | |
|                     if at < t + 0xc000 {
 | |
|                         // just enable it. `set_alarm` has already set the correct CCR val.
 | |
|                         w.set_ccie(n + 1, true);
 | |
|                     }
 | |
|                 }
 | |
|             })
 | |
|         })
 | |
|     }
 | |
| 
 | |
|     fn get_alarm<'a>(&'a self, cs: CriticalSection<'a>, alarm: AlarmHandle) -> &'a AlarmState {
 | |
|         // safety: we're allowed to assume the AlarmState is created by us, and
 | |
|         // we never create one that's out of bounds.
 | |
|         unsafe { self.alarms.borrow(cs).get_unchecked(alarm.id() as usize) }
 | |
|     }
 | |
| 
 | |
|     fn trigger_alarm(&self, n: usize, cs: CriticalSection) {
 | |
|         let alarm = &self.alarms.borrow(cs)[n];
 | |
|         alarm.timestamp.set(u64::MAX);
 | |
| 
 | |
|         // Call after clearing alarm, so the callback can set another alarm.
 | |
| 
 | |
|         // safety:
 | |
|         // - we can ignore the possibility of `f` being unset (null) because of the safety contract of `allocate_alarm`.
 | |
|         // - other than that we only store valid function pointers into alarm.callback
 | |
|         let f: fn(*mut ()) = unsafe { mem::transmute(alarm.callback.get()) };
 | |
|         f(alarm.ctx.get());
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl Driver for RtcDriver {
 | |
|     fn now(&self) -> u64 {
 | |
|         let r = T::regs_gp16();
 | |
| 
 | |
|         let period = self.period.load(Ordering::Relaxed);
 | |
|         compiler_fence(Ordering::Acquire);
 | |
|         // NOTE(unsafe) Atomic read with no side-effects
 | |
|         let counter = unsafe { r.cnt().read().cnt() };
 | |
|         calc_now(period, counter)
 | |
|     }
 | |
| 
 | |
|     unsafe fn allocate_alarm(&self) -> Option<AlarmHandle> {
 | |
|         let id = self.alarm_count.fetch_update(Ordering::AcqRel, Ordering::Acquire, |x| {
 | |
|             if x < ALARM_COUNT as u8 {
 | |
|                 Some(x + 1)
 | |
|             } else {
 | |
|                 None
 | |
|             }
 | |
|         });
 | |
| 
 | |
|         match id {
 | |
|             Ok(id) => Some(AlarmHandle::new(id)),
 | |
|             Err(_) => None,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fn set_alarm_callback(&self, alarm: AlarmHandle, callback: fn(*mut ()), ctx: *mut ()) {
 | |
|         critical_section::with(|cs| {
 | |
|             let alarm = self.get_alarm(cs, alarm);
 | |
| 
 | |
|             alarm.callback.set(callback as *const ());
 | |
|             alarm.ctx.set(ctx);
 | |
|         })
 | |
|     }
 | |
| 
 | |
|     fn set_alarm(&self, alarm: AlarmHandle, timestamp: u64) -> bool {
 | |
|         critical_section::with(|cs| {
 | |
|             let r = T::regs_gp16();
 | |
| 
 | |
|             let n = alarm.id() as usize;
 | |
|             let alarm = self.get_alarm(cs, alarm);
 | |
|             alarm.timestamp.set(timestamp);
 | |
| 
 | |
|             let t = self.now();
 | |
|             if timestamp <= t {
 | |
|                 // If alarm timestamp has passed the alarm will not fire.
 | |
|                 // Disarm the alarm and return `false` to indicate that.
 | |
|                 unsafe { r.dier().modify(|w| w.set_ccie(n + 1, false)) };
 | |
| 
 | |
|                 alarm.timestamp.set(u64::MAX);
 | |
| 
 | |
|                 return false;
 | |
|             }
 | |
| 
 | |
|             let safe_timestamp = timestamp.max(t + 3);
 | |
| 
 | |
|             // Write the CCR value regardless of whether we're going to enable it now or not.
 | |
|             // This way, when we enable it later, the right value is already set.
 | |
|             unsafe { r.ccr(n + 1).write(|w| w.set_ccr(safe_timestamp as u16)) };
 | |
| 
 | |
|             // Enable it if it'll happen soon. Otherwise, `next_period` will enable it.
 | |
|             let diff = timestamp - t;
 | |
|             // NOTE(unsafe) We're in a critical section
 | |
|             unsafe { r.dier().modify(|w| w.set_ccie(n + 1, diff < 0xc000)) };
 | |
| 
 | |
|             true
 | |
|         })
 | |
|     }
 | |
| }
 | |
| 
 | |
| pub(crate) fn init() {
 | |
|     DRIVER.init()
 | |
| }
 |