373 lines
12 KiB
Rust
373 lines
12 KiB
Rust
use crate::hal::rcc::Clocks;
|
|
use atomic_polyfill::{compiler_fence, AtomicU32, Ordering};
|
|
use core::cell::Cell;
|
|
use core::convert::TryInto;
|
|
use critical_section::CriticalSection;
|
|
use embassy::interrupt::InterruptExt;
|
|
use embassy::time::{Clock, TICKS_PER_SECOND};
|
|
use embassy::util::CriticalSectionMutex as Mutex;
|
|
|
|
use crate::interrupt;
|
|
use crate::interrupt::Interrupt;
|
|
|
|
// RTC timekeeping works with something we call "periods", which are time intervals
|
|
// of 2^15 ticks. The RTC counter value is 16 bits, so one "overflow cycle" is 2 periods.
|
|
//
|
|
// A `period` count is maintained in parallel to the RTC hardware `counter`, like this:
|
|
// - `period` and `counter` start at 0
|
|
// - `period` is incremented on overflow (at counter value 0)
|
|
// - `period` is incremented "midway" between overflows (at counter value 0x8000)
|
|
//
|
|
// Therefore, when `period` is even, counter is in 0..0x7FFF. When odd, counter is in 0x8000..0xFFFF
|
|
// This allows for now() to return the correct value even if it races an overflow.
|
|
//
|
|
// To get `now()`, `period` is read first, then `counter` is read. If the counter value matches
|
|
// the expected range for the `period` parity, we're done. If it doesn't, this means that
|
|
// a new period start has raced us between reading `period` and `counter`, so we assume the `counter` value
|
|
// corresponds to the next period.
|
|
//
|
|
// `period` is a 32bit integer, so It overflows on 2^32 * 2^15 / 32768 seconds of uptime, which is 136 years.
|
|
fn calc_now(period: u32, counter: u16) -> u64 {
|
|
((period as u64) << 15) + ((counter as u32 ^ ((period & 1) << 15)) as u64)
|
|
}
|
|
|
|
struct AlarmState {
|
|
timestamp: Cell<u64>,
|
|
callback: Cell<Option<(fn(*mut ()), *mut ())>>,
|
|
}
|
|
|
|
impl AlarmState {
|
|
fn new() -> Self {
|
|
Self {
|
|
timestamp: Cell::new(u64::MAX),
|
|
callback: Cell::new(None),
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO: This is sometimes wasteful, try to find a better way
|
|
const ALARM_COUNT: usize = 3;
|
|
|
|
/// RTC timer that can be used by the executor and to set alarms.
|
|
///
|
|
/// It can work with Timers 2 and 3.
|
|
|
|
/// This timer works internally with a unit of 2^15 ticks, which means that if a call to
|
|
/// [`embassy::time::Clock::now`] is blocked for that amount of ticks the returned value will be
|
|
/// wrong (an old value). The current default tick rate is 32768 ticks per second.
|
|
pub struct RTC<T: Instance> {
|
|
rtc: T,
|
|
irq: T::Interrupt,
|
|
|
|
/// Number of 2^23 periods elapsed since boot.
|
|
period: AtomicU32,
|
|
|
|
/// Timestamp at which to fire alarm. u64::MAX if no alarm is scheduled.
|
|
alarms: Mutex<[AlarmState; ALARM_COUNT]>,
|
|
|
|
clocks: Clocks,
|
|
}
|
|
|
|
impl<T: Instance> RTC<T> {
|
|
pub fn new(rtc: T, irq: T::Interrupt, clocks: Clocks) -> Self {
|
|
Self {
|
|
rtc,
|
|
irq,
|
|
period: AtomicU32::new(0),
|
|
alarms: Mutex::new([AlarmState::new(), AlarmState::new(), AlarmState::new()]),
|
|
clocks,
|
|
}
|
|
}
|
|
|
|
pub fn start(&'static self) {
|
|
self.rtc.enable_clock();
|
|
self.rtc.stop_and_reset();
|
|
|
|
let freq = T::pclk(&self.clocks);
|
|
let psc = freq / TICKS_PER_SECOND as u32 - 1;
|
|
let psc: u16 = psc.try_into().unwrap();
|
|
|
|
self.rtc.set_psc_arr(psc, u16::MAX);
|
|
// Mid-way point
|
|
self.rtc.set_compare(0, 0x8000);
|
|
self.rtc.set_compare_interrupt(0, true);
|
|
|
|
self.irq.set_handler(|ptr| unsafe {
|
|
let this = &*(ptr as *const () as *const Self);
|
|
this.on_interrupt();
|
|
});
|
|
self.irq.set_handler_context(self as *const _ as *mut _);
|
|
self.irq.unpend();
|
|
self.irq.enable();
|
|
|
|
self.rtc.start();
|
|
}
|
|
|
|
fn on_interrupt(&self) {
|
|
if self.rtc.overflow_interrupt_status() {
|
|
self.rtc.overflow_clear_flag();
|
|
self.next_period();
|
|
}
|
|
|
|
// Half overflow
|
|
if self.rtc.compare_interrupt_status(0) {
|
|
self.rtc.compare_clear_flag(0);
|
|
self.next_period();
|
|
}
|
|
|
|
for n in 1..=ALARM_COUNT {
|
|
if self.rtc.compare_interrupt_status(n) {
|
|
self.rtc.compare_clear_flag(n);
|
|
critical_section::with(|cs| self.trigger_alarm(n, cs));
|
|
}
|
|
}
|
|
}
|
|
|
|
fn next_period(&self) {
|
|
critical_section::with(|cs| {
|
|
let period = self.period.fetch_add(1, Ordering::Relaxed) + 1;
|
|
let t = (period as u64) << 15;
|
|
|
|
for n in 1..=ALARM_COUNT {
|
|
let alarm = &self.alarms.borrow(cs)[n - 1];
|
|
let at = alarm.timestamp.get();
|
|
|
|
let diff = at - t;
|
|
if diff < 0xc000 {
|
|
self.rtc.set_compare(n, at as u16);
|
|
self.rtc.set_compare_interrupt(n, true);
|
|
}
|
|
}
|
|
})
|
|
}
|
|
|
|
fn trigger_alarm(&self, n: usize, cs: CriticalSection) {
|
|
self.rtc.set_compare_interrupt(n, false);
|
|
|
|
let alarm = &self.alarms.borrow(cs)[n - 1];
|
|
alarm.timestamp.set(u64::MAX);
|
|
|
|
// Call after clearing alarm, so the callback can set another alarm.
|
|
if let Some((f, ctx)) = alarm.callback.get() {
|
|
f(ctx);
|
|
}
|
|
}
|
|
|
|
fn set_alarm_callback(&self, n: usize, callback: fn(*mut ()), ctx: *mut ()) {
|
|
critical_section::with(|cs| {
|
|
let alarm = &self.alarms.borrow(cs)[n - 1];
|
|
alarm.callback.set(Some((callback, ctx)));
|
|
})
|
|
}
|
|
|
|
fn set_alarm(&self, n: usize, timestamp: u64) {
|
|
critical_section::with(|cs| {
|
|
let alarm = &self.alarms.borrow(cs)[n - 1];
|
|
alarm.timestamp.set(timestamp);
|
|
|
|
let t = self.now();
|
|
if timestamp <= t {
|
|
self.trigger_alarm(n, cs);
|
|
return;
|
|
}
|
|
|
|
let diff = timestamp - t;
|
|
if diff < 0xc000 {
|
|
let safe_timestamp = timestamp.max(t + 3);
|
|
self.rtc.set_compare(n, safe_timestamp as u16);
|
|
self.rtc.set_compare_interrupt(n, true);
|
|
} else {
|
|
self.rtc.set_compare_interrupt(n, false);
|
|
}
|
|
});
|
|
}
|
|
|
|
pub fn alarm1(&'static self) -> Alarm<T> {
|
|
Alarm { n: 1, rtc: self }
|
|
}
|
|
pub fn alarm2(&'static self) -> Option<Alarm<T>> {
|
|
if T::REAL_ALARM_COUNT >= 2 {
|
|
Some(Alarm { n: 2, rtc: self })
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
pub fn alarm3(&'static self) -> Option<Alarm<T>> {
|
|
if T::REAL_ALARM_COUNT >= 3 {
|
|
Some(Alarm { n: 3, rtc: self })
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T: Instance> embassy::time::Clock for RTC<T> {
|
|
fn now(&self) -> u64 {
|
|
let period = self.period.load(Ordering::Relaxed);
|
|
compiler_fence(Ordering::Acquire);
|
|
let counter = self.rtc.counter();
|
|
calc_now(period, counter)
|
|
}
|
|
}
|
|
|
|
pub struct Alarm<T: Instance> {
|
|
n: usize,
|
|
rtc: &'static RTC<T>,
|
|
}
|
|
|
|
impl<T: Instance> embassy::time::Alarm for Alarm<T> {
|
|
fn set_callback(&self, callback: fn(*mut ()), ctx: *mut ()) {
|
|
self.rtc.set_alarm_callback(self.n, callback, ctx);
|
|
}
|
|
|
|
fn set(&self, timestamp: u64) {
|
|
self.rtc.set_alarm(self.n, timestamp);
|
|
}
|
|
|
|
fn clear(&self) {
|
|
self.rtc.set_alarm(self.n, u64::MAX);
|
|
}
|
|
}
|
|
|
|
mod sealed {
|
|
pub trait Sealed {}
|
|
}
|
|
|
|
pub trait Instance: sealed::Sealed + Sized + 'static {
|
|
type Interrupt: Interrupt;
|
|
const REAL_ALARM_COUNT: usize;
|
|
|
|
fn enable_clock(&self);
|
|
fn set_compare(&self, n: usize, value: u16);
|
|
fn set_compare_interrupt(&self, n: usize, enable: bool);
|
|
fn compare_interrupt_status(&self, n: usize) -> bool;
|
|
fn compare_clear_flag(&self, n: usize);
|
|
fn overflow_interrupt_status(&self) -> bool;
|
|
fn overflow_clear_flag(&self);
|
|
// This method should ensure that the values are really updated before returning
|
|
fn set_psc_arr(&self, psc: u16, arr: u16);
|
|
fn stop_and_reset(&self);
|
|
fn start(&self);
|
|
fn counter(&self) -> u16;
|
|
fn pclk(clocks: &Clocks) -> u32;
|
|
}
|
|
|
|
#[allow(unused_macros)]
|
|
macro_rules! impl_timer {
|
|
($module:ident: ($TYPE:ident, $INT:ident, $timXen:ident, $timXrst:ident, $apbenr:ident, $apbrstr:ident, $pclk: ident)) => {
|
|
mod $module {
|
|
use super::*;
|
|
use crate::hal::pac::{$TYPE, RCC};
|
|
|
|
impl sealed::Sealed for $TYPE {}
|
|
|
|
impl Instance for $TYPE {
|
|
type Interrupt = interrupt::$INT;
|
|
const REAL_ALARM_COUNT: usize = 3;
|
|
|
|
fn enable_clock(&self) {
|
|
// NOTE(unsafe) It will only be used for atomic operations
|
|
unsafe {
|
|
let rcc = &*RCC::ptr();
|
|
|
|
rcc.$apbenr.modify(|_, w| w.$timXen().set_bit());
|
|
rcc.$apbrstr.modify(|_, w| w.$timXrst().set_bit());
|
|
rcc.$apbrstr.modify(|_, w| w.$timXrst().clear_bit());
|
|
}
|
|
}
|
|
|
|
fn set_compare(&self, n: usize, value: u16) {
|
|
// NOTE(unsafe) these registers accept all the range of u16 values
|
|
match n {
|
|
0 => self.ccr1.write(|w| unsafe { w.bits(value.into()) }),
|
|
1 => self.ccr2.write(|w| unsafe { w.bits(value.into()) }),
|
|
2 => self.ccr3.write(|w| unsafe { w.bits(value.into()) }),
|
|
3 => self.ccr4.write(|w| unsafe { w.bits(value.into()) }),
|
|
_ => {}
|
|
}
|
|
}
|
|
|
|
fn set_compare_interrupt(&self, n: usize, enable: bool) {
|
|
if n > 3 {
|
|
return;
|
|
}
|
|
let bit = n as u8 + 1;
|
|
unsafe {
|
|
if enable {
|
|
self.dier.modify(|r, w| w.bits(r.bits() | (1 << bit)));
|
|
} else {
|
|
self.dier.modify(|r, w| w.bits(r.bits() & !(1 << bit)));
|
|
}
|
|
}
|
|
}
|
|
|
|
fn compare_interrupt_status(&self, n: usize) -> bool {
|
|
let status = self.sr.read();
|
|
match n {
|
|
0 => status.cc1if().bit_is_set(),
|
|
1 => status.cc2if().bit_is_set(),
|
|
2 => status.cc3if().bit_is_set(),
|
|
3 => status.cc4if().bit_is_set(),
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
fn compare_clear_flag(&self, n: usize) {
|
|
if n > 3 {
|
|
return;
|
|
}
|
|
let bit = n as u8 + 1;
|
|
unsafe {
|
|
self.sr.modify(|r, w| w.bits(r.bits() & !(1 << bit)));
|
|
}
|
|
}
|
|
|
|
fn overflow_interrupt_status(&self) -> bool {
|
|
self.sr.read().uif().bit_is_set()
|
|
}
|
|
|
|
fn overflow_clear_flag(&self) {
|
|
unsafe {
|
|
self.sr.modify(|_, w| w.uif().clear_bit());
|
|
}
|
|
}
|
|
|
|
fn set_psc_arr(&self, psc: u16, arr: u16) {
|
|
// NOTE(unsafe) All u16 values are valid
|
|
self.psc.write(|w| unsafe { w.bits(psc.into()) });
|
|
self.arr.write(|w| unsafe { w.bits(arr.into()) });
|
|
|
|
unsafe {
|
|
// Set URS, generate update, clear URS
|
|
self.cr1.modify(|_, w| w.urs().set_bit());
|
|
self.egr.write(|w| w.ug().set_bit());
|
|
self.cr1.modify(|_, w| w.urs().clear_bit());
|
|
}
|
|
}
|
|
|
|
fn stop_and_reset(&self) {
|
|
unsafe {
|
|
self.cr1.modify(|_, w| w.cen().clear_bit());
|
|
}
|
|
self.cnt.reset();
|
|
}
|
|
|
|
fn start(&self) {
|
|
self.cr1.modify(|_, w| w.cen().set_bit());
|
|
}
|
|
|
|
fn counter(&self) -> u16 {
|
|
self.cnt.read().bits() as u16
|
|
}
|
|
|
|
fn pclk(clocks: &Clocks) -> u32 {
|
|
clocks.$pclk().0
|
|
}
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
impl_timer!(tim2: (TIM2, TIM2, tim2en, tim2rst, apb1enr, apb1rstr, apb1_tim_clk));
|
|
impl_timer!(tim3: (TIM3, TIM3, tim3en, tim3rst, apb1enr, apb1rstr, apb1_tim_clk));
|