1910 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			1910 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| //! Crypto Accelerator (CRYP)
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| use core::cmp::min;
 | |
| use core::marker::PhantomData;
 | |
| use core::ptr;
 | |
| 
 | |
| use embassy_hal_internal::{into_ref, PeripheralRef};
 | |
| use embassy_sync::waitqueue::AtomicWaker;
 | |
| 
 | |
| use crate::dma::{NoDma, Transfer, TransferOptions};
 | |
| use crate::interrupt::typelevel::Interrupt;
 | |
| use crate::{interrupt, pac, peripherals, rcc, Peripheral};
 | |
| 
 | |
| const DES_BLOCK_SIZE: usize = 8; // 64 bits
 | |
| const AES_BLOCK_SIZE: usize = 16; // 128 bits
 | |
| 
 | |
| static CRYP_WAKER: AtomicWaker = AtomicWaker::new();
 | |
| 
 | |
| /// CRYP interrupt handler.
 | |
| pub struct InterruptHandler<T: Instance> {
 | |
|     _phantom: PhantomData<T>,
 | |
| }
 | |
| 
 | |
| impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
 | |
|     unsafe fn on_interrupt() {
 | |
|         let bits = T::regs().misr().read();
 | |
|         if bits.inmis() {
 | |
|             T::regs().imscr().modify(|w| w.set_inim(false));
 | |
|             CRYP_WAKER.wake();
 | |
|         }
 | |
|         if bits.outmis() {
 | |
|             T::regs().imscr().modify(|w| w.set_outim(false));
 | |
|             CRYP_WAKER.wake();
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// This trait encapsulates all cipher-specific behavior/
 | |
| pub trait Cipher<'c> {
 | |
|     /// Processing block size. Determined by the processor and the algorithm.
 | |
|     const BLOCK_SIZE: usize;
 | |
| 
 | |
|     /// Indicates whether the cipher requires the application to provide padding.
 | |
|     /// If `true`, no partial blocks will be accepted (a panic will occur).
 | |
|     const REQUIRES_PADDING: bool = false;
 | |
| 
 | |
|     /// Returns the symmetric key.
 | |
|     fn key(&self) -> &[u8];
 | |
| 
 | |
|     /// Returns the initialization vector.
 | |
|     fn iv(&self) -> &[u8];
 | |
| 
 | |
|     /// Sets the processor algorithm mode according to the associated cipher.
 | |
|     fn set_algomode(&self, p: pac::cryp::Cryp);
 | |
| 
 | |
|     /// Performs any key preparation within the processor, if necessary.
 | |
|     fn prepare_key(&self, _p: pac::cryp::Cryp) {}
 | |
| 
 | |
|     /// Performs any cipher-specific initialization.
 | |
|     fn init_phase_blocking<T: Instance, DmaIn, DmaOut>(&self, _p: pac::cryp::Cryp, _cryp: &Cryp<T, DmaIn, DmaOut>) {}
 | |
| 
 | |
|     /// Performs any cipher-specific initialization.
 | |
|     async fn init_phase<T: Instance, DmaIn, DmaOut>(&self, _p: pac::cryp::Cryp, _cryp: &mut Cryp<'_, T, DmaIn, DmaOut>)
 | |
|     where
 | |
|         DmaIn: crate::cryp::DmaIn<T>,
 | |
|         DmaOut: crate::cryp::DmaOut<T>,
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     /// Called prior to processing the last data block for cipher-specific operations.
 | |
|     fn pre_final(&self, _p: pac::cryp::Cryp, _dir: Direction, _padding_len: usize) -> [u32; 4] {
 | |
|         return [0; 4];
 | |
|     }
 | |
| 
 | |
|     /// Called after processing the last data block for cipher-specific operations.
 | |
|     fn post_final_blocking<T: Instance, DmaIn, DmaOut>(
 | |
|         &self,
 | |
|         _p: pac::cryp::Cryp,
 | |
|         _cryp: &Cryp<T, DmaIn, DmaOut>,
 | |
|         _dir: Direction,
 | |
|         _int_data: &mut [u8; AES_BLOCK_SIZE],
 | |
|         _temp1: [u32; 4],
 | |
|         _padding_mask: [u8; 16],
 | |
|     ) {
 | |
|     }
 | |
| 
 | |
|     /// Called after processing the last data block for cipher-specific operations.
 | |
|     async fn post_final<T: Instance, DmaIn, DmaOut>(
 | |
|         &self,
 | |
|         _p: pac::cryp::Cryp,
 | |
|         _cryp: &mut Cryp<'_, T, DmaIn, DmaOut>,
 | |
|         _dir: Direction,
 | |
|         _int_data: &mut [u8; AES_BLOCK_SIZE],
 | |
|         _temp1: [u32; 4],
 | |
|         _padding_mask: [u8; 16],
 | |
|     ) where
 | |
|         DmaIn: crate::cryp::DmaIn<T>,
 | |
|         DmaOut: crate::cryp::DmaOut<T>,
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     /// Returns the AAD header block as required by the cipher.
 | |
|     fn get_header_block(&self) -> &[u8] {
 | |
|         return [0; 0].as_slice();
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// This trait enables restriction of ciphers to specific key sizes.
 | |
| pub trait CipherSized {}
 | |
| 
 | |
| /// This trait enables restriction of initialization vectors to sizes compatibile with a cipher mode.
 | |
| pub trait IVSized {}
 | |
| 
 | |
| /// This trait enables restriction of a header phase to authenticated ciphers only.
 | |
| pub trait CipherAuthenticated<const TAG_SIZE: usize> {
 | |
|     /// Defines the authentication tag size.
 | |
|     const TAG_SIZE: usize = TAG_SIZE;
 | |
| }
 | |
| 
 | |
| /// TDES-ECB Cipher Mode
 | |
| pub struct TdesEcb<'c, const KEY_SIZE: usize> {
 | |
|     iv: &'c [u8; 0],
 | |
|     key: &'c [u8; KEY_SIZE],
 | |
| }
 | |
| 
 | |
| impl<'c, const KEY_SIZE: usize> TdesEcb<'c, KEY_SIZE> {
 | |
|     /// Constructs a new AES-ECB cipher for a cryptographic operation.
 | |
|     pub fn new(key: &'c [u8; KEY_SIZE]) -> Self {
 | |
|         return Self { key: key, iv: &[0; 0] };
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<'c, const KEY_SIZE: usize> Cipher<'c> for TdesEcb<'c, KEY_SIZE> {
 | |
|     const BLOCK_SIZE: usize = DES_BLOCK_SIZE;
 | |
|     const REQUIRES_PADDING: bool = true;
 | |
| 
 | |
|     fn key(&self) -> &'c [u8] {
 | |
|         self.key
 | |
|     }
 | |
| 
 | |
|     fn iv(&self) -> &'c [u8] {
 | |
|         self.iv
 | |
|     }
 | |
| 
 | |
|     fn set_algomode(&self, p: pac::cryp::Cryp) {
 | |
|         #[cfg(cryp_v1)]
 | |
|         {
 | |
|             p.cr().modify(|w| w.set_algomode(0));
 | |
|         }
 | |
|         #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
|         {
 | |
|             p.cr().modify(|w| w.set_algomode0(0));
 | |
|             p.cr().modify(|w| w.set_algomode3(false));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<'c> CipherSized for TdesEcb<'c, { 112 / 8 }> {}
 | |
| impl<'c> CipherSized for TdesEcb<'c, { 168 / 8 }> {}
 | |
| impl<'c, const KEY_SIZE: usize> IVSized for TdesEcb<'c, KEY_SIZE> {}
 | |
| 
 | |
| /// TDES-CBC Cipher Mode
 | |
| pub struct TdesCbc<'c, const KEY_SIZE: usize> {
 | |
|     iv: &'c [u8; 8],
 | |
|     key: &'c [u8; KEY_SIZE],
 | |
| }
 | |
| 
 | |
| impl<'c, const KEY_SIZE: usize> TdesCbc<'c, KEY_SIZE> {
 | |
|     /// Constructs a new TDES-CBC cipher for a cryptographic operation.
 | |
|     pub fn new(key: &'c [u8; KEY_SIZE], iv: &'c [u8; 8]) -> Self {
 | |
|         return Self { key: key, iv: iv };
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<'c, const KEY_SIZE: usize> Cipher<'c> for TdesCbc<'c, KEY_SIZE> {
 | |
|     const BLOCK_SIZE: usize = DES_BLOCK_SIZE;
 | |
|     const REQUIRES_PADDING: bool = true;
 | |
| 
 | |
|     fn key(&self) -> &'c [u8] {
 | |
|         self.key
 | |
|     }
 | |
| 
 | |
|     fn iv(&self) -> &'c [u8] {
 | |
|         self.iv
 | |
|     }
 | |
| 
 | |
|     fn set_algomode(&self, p: pac::cryp::Cryp) {
 | |
|         #[cfg(cryp_v1)]
 | |
|         {
 | |
|             p.cr().modify(|w| w.set_algomode(1));
 | |
|         }
 | |
|         #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
|         {
 | |
|             p.cr().modify(|w| w.set_algomode0(1));
 | |
|             p.cr().modify(|w| w.set_algomode3(false));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<'c> CipherSized for TdesCbc<'c, { 112 / 8 }> {}
 | |
| impl<'c> CipherSized for TdesCbc<'c, { 168 / 8 }> {}
 | |
| impl<'c, const KEY_SIZE: usize> IVSized for TdesCbc<'c, KEY_SIZE> {}
 | |
| 
 | |
| /// DES-ECB Cipher Mode
 | |
| pub struct DesEcb<'c, const KEY_SIZE: usize> {
 | |
|     iv: &'c [u8; 0],
 | |
|     key: &'c [u8; KEY_SIZE],
 | |
| }
 | |
| 
 | |
| impl<'c, const KEY_SIZE: usize> DesEcb<'c, KEY_SIZE> {
 | |
|     /// Constructs a new AES-ECB cipher for a cryptographic operation.
 | |
|     pub fn new(key: &'c [u8; KEY_SIZE]) -> Self {
 | |
|         return Self { key: key, iv: &[0; 0] };
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<'c, const KEY_SIZE: usize> Cipher<'c> for DesEcb<'c, KEY_SIZE> {
 | |
|     const BLOCK_SIZE: usize = DES_BLOCK_SIZE;
 | |
|     const REQUIRES_PADDING: bool = true;
 | |
| 
 | |
|     fn key(&self) -> &'c [u8] {
 | |
|         self.key
 | |
|     }
 | |
| 
 | |
|     fn iv(&self) -> &'c [u8] {
 | |
|         self.iv
 | |
|     }
 | |
| 
 | |
|     fn set_algomode(&self, p: pac::cryp::Cryp) {
 | |
|         #[cfg(cryp_v1)]
 | |
|         {
 | |
|             p.cr().modify(|w| w.set_algomode(2));
 | |
|         }
 | |
|         #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
|         {
 | |
|             p.cr().modify(|w| w.set_algomode0(2));
 | |
|             p.cr().modify(|w| w.set_algomode3(false));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<'c> CipherSized for DesEcb<'c, { 56 / 8 }> {}
 | |
| impl<'c, const KEY_SIZE: usize> IVSized for DesEcb<'c, KEY_SIZE> {}
 | |
| 
 | |
| /// DES-CBC Cipher Mode
 | |
| pub struct DesCbc<'c, const KEY_SIZE: usize> {
 | |
|     iv: &'c [u8; 8],
 | |
|     key: &'c [u8; KEY_SIZE],
 | |
| }
 | |
| 
 | |
| impl<'c, const KEY_SIZE: usize> DesCbc<'c, KEY_SIZE> {
 | |
|     /// Constructs a new AES-CBC cipher for a cryptographic operation.
 | |
|     pub fn new(key: &'c [u8; KEY_SIZE], iv: &'c [u8; 8]) -> Self {
 | |
|         return Self { key: key, iv: iv };
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<'c, const KEY_SIZE: usize> Cipher<'c> for DesCbc<'c, KEY_SIZE> {
 | |
|     const BLOCK_SIZE: usize = DES_BLOCK_SIZE;
 | |
|     const REQUIRES_PADDING: bool = true;
 | |
| 
 | |
|     fn key(&self) -> &'c [u8] {
 | |
|         self.key
 | |
|     }
 | |
| 
 | |
|     fn iv(&self) -> &'c [u8] {
 | |
|         self.iv
 | |
|     }
 | |
| 
 | |
|     fn set_algomode(&self, p: pac::cryp::Cryp) {
 | |
|         #[cfg(cryp_v1)]
 | |
|         {
 | |
|             p.cr().modify(|w| w.set_algomode(3));
 | |
|         }
 | |
|         #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
|         {
 | |
|             p.cr().modify(|w| w.set_algomode0(3));
 | |
|             p.cr().modify(|w| w.set_algomode3(false));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<'c> CipherSized for DesCbc<'c, { 56 / 8 }> {}
 | |
| impl<'c, const KEY_SIZE: usize> IVSized for DesCbc<'c, KEY_SIZE> {}
 | |
| 
 | |
| /// AES-ECB Cipher Mode
 | |
| pub struct AesEcb<'c, const KEY_SIZE: usize> {
 | |
|     iv: &'c [u8; 0],
 | |
|     key: &'c [u8; KEY_SIZE],
 | |
| }
 | |
| 
 | |
| impl<'c, const KEY_SIZE: usize> AesEcb<'c, KEY_SIZE> {
 | |
|     /// Constructs a new AES-ECB cipher for a cryptographic operation.
 | |
|     pub fn new(key: &'c [u8; KEY_SIZE]) -> Self {
 | |
|         return Self { key: key, iv: &[0; 0] };
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesEcb<'c, KEY_SIZE> {
 | |
|     const BLOCK_SIZE: usize = AES_BLOCK_SIZE;
 | |
|     const REQUIRES_PADDING: bool = true;
 | |
| 
 | |
|     fn key(&self) -> &'c [u8] {
 | |
|         self.key
 | |
|     }
 | |
| 
 | |
|     fn iv(&self) -> &'c [u8] {
 | |
|         self.iv
 | |
|     }
 | |
| 
 | |
|     fn prepare_key(&self, p: pac::cryp::Cryp) {
 | |
|         #[cfg(cryp_v1)]
 | |
|         {
 | |
|             p.cr().modify(|w| w.set_algomode(7));
 | |
|         }
 | |
|         #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
|         {
 | |
|             p.cr().modify(|w| w.set_algomode0(7));
 | |
|             p.cr().modify(|w| w.set_algomode3(false));
 | |
|         }
 | |
|         p.cr().modify(|w| w.set_crypen(true));
 | |
|         while p.sr().read().busy() {}
 | |
|     }
 | |
| 
 | |
|     fn set_algomode(&self, p: pac::cryp::Cryp) {
 | |
|         #[cfg(cryp_v1)]
 | |
|         {
 | |
|             p.cr().modify(|w| w.set_algomode(2));
 | |
|         }
 | |
|         #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
|         {
 | |
|             p.cr().modify(|w| w.set_algomode0(2));
 | |
|             p.cr().modify(|w| w.set_algomode3(false));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<'c> CipherSized for AesEcb<'c, { 128 / 8 }> {}
 | |
| impl<'c> CipherSized for AesEcb<'c, { 192 / 8 }> {}
 | |
| impl<'c> CipherSized for AesEcb<'c, { 256 / 8 }> {}
 | |
| impl<'c, const KEY_SIZE: usize> IVSized for AesEcb<'c, KEY_SIZE> {}
 | |
| 
 | |
| /// AES-CBC Cipher Mode
 | |
| pub struct AesCbc<'c, const KEY_SIZE: usize> {
 | |
|     iv: &'c [u8; 16],
 | |
|     key: &'c [u8; KEY_SIZE],
 | |
| }
 | |
| 
 | |
| impl<'c, const KEY_SIZE: usize> AesCbc<'c, KEY_SIZE> {
 | |
|     /// Constructs a new AES-CBC cipher for a cryptographic operation.
 | |
|     pub fn new(key: &'c [u8; KEY_SIZE], iv: &'c [u8; 16]) -> Self {
 | |
|         return Self { key: key, iv: iv };
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesCbc<'c, KEY_SIZE> {
 | |
|     const BLOCK_SIZE: usize = AES_BLOCK_SIZE;
 | |
|     const REQUIRES_PADDING: bool = true;
 | |
| 
 | |
|     fn key(&self) -> &'c [u8] {
 | |
|         self.key
 | |
|     }
 | |
| 
 | |
|     fn iv(&self) -> &'c [u8] {
 | |
|         self.iv
 | |
|     }
 | |
| 
 | |
|     fn prepare_key(&self, p: pac::cryp::Cryp) {
 | |
|         #[cfg(cryp_v1)]
 | |
|         {
 | |
|             p.cr().modify(|w| w.set_algomode(7));
 | |
|         }
 | |
|         #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
|         {
 | |
|             p.cr().modify(|w| w.set_algomode0(7));
 | |
|             p.cr().modify(|w| w.set_algomode3(false));
 | |
|         }
 | |
|         p.cr().modify(|w| w.set_crypen(true));
 | |
|         while p.sr().read().busy() {}
 | |
|     }
 | |
| 
 | |
|     fn set_algomode(&self, p: pac::cryp::Cryp) {
 | |
|         #[cfg(cryp_v1)]
 | |
|         {
 | |
|             p.cr().modify(|w| w.set_algomode(5));
 | |
|         }
 | |
|         #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
|         {
 | |
|             p.cr().modify(|w| w.set_algomode0(5));
 | |
|             p.cr().modify(|w| w.set_algomode3(false));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<'c> CipherSized for AesCbc<'c, { 128 / 8 }> {}
 | |
| impl<'c> CipherSized for AesCbc<'c, { 192 / 8 }> {}
 | |
| impl<'c> CipherSized for AesCbc<'c, { 256 / 8 }> {}
 | |
| impl<'c, const KEY_SIZE: usize> IVSized for AesCbc<'c, KEY_SIZE> {}
 | |
| 
 | |
| /// AES-CTR Cipher Mode
 | |
| pub struct AesCtr<'c, const KEY_SIZE: usize> {
 | |
|     iv: &'c [u8; 16],
 | |
|     key: &'c [u8; KEY_SIZE],
 | |
| }
 | |
| 
 | |
| impl<'c, const KEY_SIZE: usize> AesCtr<'c, KEY_SIZE> {
 | |
|     /// Constructs a new AES-CTR cipher for a cryptographic operation.
 | |
|     pub fn new(key: &'c [u8; KEY_SIZE], iv: &'c [u8; 16]) -> Self {
 | |
|         return Self { key: key, iv: iv };
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesCtr<'c, KEY_SIZE> {
 | |
|     const BLOCK_SIZE: usize = AES_BLOCK_SIZE;
 | |
| 
 | |
|     fn key(&self) -> &'c [u8] {
 | |
|         self.key
 | |
|     }
 | |
| 
 | |
|     fn iv(&self) -> &'c [u8] {
 | |
|         self.iv
 | |
|     }
 | |
| 
 | |
|     fn set_algomode(&self, p: pac::cryp::Cryp) {
 | |
|         #[cfg(cryp_v1)]
 | |
|         {
 | |
|             p.cr().modify(|w| w.set_algomode(6));
 | |
|         }
 | |
|         #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
|         {
 | |
|             p.cr().modify(|w| w.set_algomode0(6));
 | |
|             p.cr().modify(|w| w.set_algomode3(false));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<'c> CipherSized for AesCtr<'c, { 128 / 8 }> {}
 | |
| impl<'c> CipherSized for AesCtr<'c, { 192 / 8 }> {}
 | |
| impl<'c> CipherSized for AesCtr<'c, { 256 / 8 }> {}
 | |
| impl<'c, const KEY_SIZE: usize> IVSized for AesCtr<'c, KEY_SIZE> {}
 | |
| 
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| ///AES-GCM Cipher Mode
 | |
| pub struct AesGcm<'c, const KEY_SIZE: usize> {
 | |
|     iv: [u8; 16],
 | |
|     key: &'c [u8; KEY_SIZE],
 | |
| }
 | |
| 
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c, const KEY_SIZE: usize> AesGcm<'c, KEY_SIZE> {
 | |
|     /// Constucts a new AES-GCM cipher for a cryptographic operation.
 | |
|     pub fn new(key: &'c [u8; KEY_SIZE], iv: &'c [u8; 12]) -> Self {
 | |
|         let mut new_gcm = Self { key: key, iv: [0; 16] };
 | |
|         new_gcm.iv[..12].copy_from_slice(iv);
 | |
|         new_gcm.iv[15] = 2;
 | |
|         new_gcm
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesGcm<'c, KEY_SIZE> {
 | |
|     const BLOCK_SIZE: usize = AES_BLOCK_SIZE;
 | |
| 
 | |
|     fn key(&self) -> &'c [u8] {
 | |
|         self.key
 | |
|     }
 | |
| 
 | |
|     fn iv(&self) -> &[u8] {
 | |
|         self.iv.as_slice()
 | |
|     }
 | |
| 
 | |
|     fn set_algomode(&self, p: pac::cryp::Cryp) {
 | |
|         p.cr().modify(|w| w.set_algomode0(0));
 | |
|         p.cr().modify(|w| w.set_algomode3(true));
 | |
|     }
 | |
| 
 | |
|     fn init_phase_blocking<T: Instance, DmaIn, DmaOut>(&self, p: pac::cryp::Cryp, _cryp: &Cryp<T, DmaIn, DmaOut>) {
 | |
|         p.cr().modify(|w| w.set_gcm_ccmph(0));
 | |
|         p.cr().modify(|w| w.set_crypen(true));
 | |
|         while p.cr().read().crypen() {}
 | |
|     }
 | |
| 
 | |
|     async fn init_phase<T: Instance, DmaIn, DmaOut>(&self, p: pac::cryp::Cryp, _cryp: &mut Cryp<'_, T, DmaIn, DmaOut>) {
 | |
|         p.cr().modify(|w| w.set_gcm_ccmph(0));
 | |
|         p.cr().modify(|w| w.set_crypen(true));
 | |
|         while p.cr().read().crypen() {}
 | |
|     }
 | |
| 
 | |
|     #[cfg(cryp_v2)]
 | |
|     fn pre_final(&self, p: pac::cryp::Cryp, dir: Direction, _padding_len: usize) -> [u32; 4] {
 | |
|         //Handle special GCM partial block process.
 | |
|         if dir == Direction::Encrypt {
 | |
|             p.cr().modify(|w| w.set_crypen(false));
 | |
|             p.cr().modify(|w| w.set_algomode3(false));
 | |
|             p.cr().modify(|w| w.set_algomode0(6));
 | |
|             let iv1r = p.csgcmccmr(7).read() - 1;
 | |
|             p.init(1).ivrr().write_value(iv1r);
 | |
|             p.cr().modify(|w| w.set_crypen(true));
 | |
|         }
 | |
|         [0; 4]
 | |
|     }
 | |
| 
 | |
|     #[cfg(any(cryp_v3, cryp_v4))]
 | |
|     fn pre_final(&self, p: pac::cryp::Cryp, _dir: Direction, padding_len: usize) -> [u32; 4] {
 | |
|         //Handle special GCM partial block process.
 | |
|         p.cr().modify(|w| w.set_npblb(padding_len as u8));
 | |
|         [0; 4]
 | |
|     }
 | |
| 
 | |
|     #[cfg(cryp_v2)]
 | |
|     fn post_final_blocking<T: Instance, DmaIn, DmaOut>(
 | |
|         &self,
 | |
|         p: pac::cryp::Cryp,
 | |
|         cryp: &Cryp<T, DmaIn, DmaOut>,
 | |
|         dir: Direction,
 | |
|         int_data: &mut [u8; AES_BLOCK_SIZE],
 | |
|         _temp1: [u32; 4],
 | |
|         padding_mask: [u8; AES_BLOCK_SIZE],
 | |
|     ) {
 | |
|         if dir == Direction::Encrypt {
 | |
|             //Handle special GCM partial block process.
 | |
|             p.cr().modify(|w| w.set_crypen(false));
 | |
|             p.cr().modify(|w| w.set_algomode3(true));
 | |
|             p.cr().modify(|w| w.set_algomode0(0));
 | |
|             for i in 0..AES_BLOCK_SIZE {
 | |
|                 int_data[i] = int_data[i] & padding_mask[i];
 | |
|             }
 | |
|             p.cr().modify(|w| w.set_crypen(true));
 | |
|             p.cr().modify(|w| w.set_gcm_ccmph(3));
 | |
| 
 | |
|             cryp.write_bytes_blocking(Self::BLOCK_SIZE, int_data);
 | |
|             cryp.read_bytes_blocking(Self::BLOCK_SIZE, int_data);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     #[cfg(cryp_v2)]
 | |
|     async fn post_final<T: Instance, DmaIn, DmaOut>(
 | |
|         &self,
 | |
|         p: pac::cryp::Cryp,
 | |
|         cryp: &mut Cryp<'_, T, DmaIn, DmaOut>,
 | |
|         dir: Direction,
 | |
|         int_data: &mut [u8; AES_BLOCK_SIZE],
 | |
|         _temp1: [u32; 4],
 | |
|         padding_mask: [u8; AES_BLOCK_SIZE],
 | |
|     ) where
 | |
|         DmaIn: crate::cryp::DmaIn<T>,
 | |
|         DmaOut: crate::cryp::DmaOut<T>,
 | |
|     {
 | |
|         if dir == Direction::Encrypt {
 | |
|             // Handle special GCM partial block process.
 | |
|             p.cr().modify(|w| w.set_crypen(false));
 | |
|             p.cr().modify(|w| w.set_algomode3(true));
 | |
|             p.cr().modify(|w| w.set_algomode0(0));
 | |
|             for i in 0..AES_BLOCK_SIZE {
 | |
|                 int_data[i] = int_data[i] & padding_mask[i];
 | |
|             }
 | |
|             p.cr().modify(|w| w.set_crypen(true));
 | |
|             p.cr().modify(|w| w.set_gcm_ccmph(3));
 | |
| 
 | |
|             let mut out_data: [u8; AES_BLOCK_SIZE] = [0; AES_BLOCK_SIZE];
 | |
| 
 | |
|             let read = Cryp::<T, DmaIn, DmaOut>::read_bytes(&mut cryp.outdma, Self::BLOCK_SIZE, &mut out_data);
 | |
|             let write = Cryp::<T, DmaIn, DmaOut>::write_bytes(&mut cryp.indma, Self::BLOCK_SIZE, int_data);
 | |
| 
 | |
|             embassy_futures::join::join(read, write).await;
 | |
| 
 | |
|             int_data.copy_from_slice(&out_data);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c> CipherSized for AesGcm<'c, { 128 / 8 }> {}
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c> CipherSized for AesGcm<'c, { 192 / 8 }> {}
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c> CipherSized for AesGcm<'c, { 256 / 8 }> {}
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c, const KEY_SIZE: usize> CipherAuthenticated<16> for AesGcm<'c, KEY_SIZE> {}
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c, const KEY_SIZE: usize> IVSized for AesGcm<'c, KEY_SIZE> {}
 | |
| 
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| /// AES-GMAC Cipher Mode
 | |
| pub struct AesGmac<'c, const KEY_SIZE: usize> {
 | |
|     iv: [u8; 16],
 | |
|     key: &'c [u8; KEY_SIZE],
 | |
| }
 | |
| 
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c, const KEY_SIZE: usize> AesGmac<'c, KEY_SIZE> {
 | |
|     /// Constructs a new AES-GMAC cipher for a cryptographic operation.
 | |
|     pub fn new(key: &'c [u8; KEY_SIZE], iv: &'c [u8; 12]) -> Self {
 | |
|         let mut new_gmac = Self { key: key, iv: [0; 16] };
 | |
|         new_gmac.iv[..12].copy_from_slice(iv);
 | |
|         new_gmac.iv[15] = 2;
 | |
|         new_gmac
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesGmac<'c, KEY_SIZE> {
 | |
|     const BLOCK_SIZE: usize = AES_BLOCK_SIZE;
 | |
| 
 | |
|     fn key(&self) -> &'c [u8] {
 | |
|         self.key
 | |
|     }
 | |
| 
 | |
|     fn iv(&self) -> &[u8] {
 | |
|         self.iv.as_slice()
 | |
|     }
 | |
| 
 | |
|     fn set_algomode(&self, p: pac::cryp::Cryp) {
 | |
|         p.cr().modify(|w| w.set_algomode0(0));
 | |
|         p.cr().modify(|w| w.set_algomode3(true));
 | |
|     }
 | |
| 
 | |
|     fn init_phase_blocking<T: Instance, DmaIn, DmaOut>(&self, p: pac::cryp::Cryp, _cryp: &Cryp<T, DmaIn, DmaOut>) {
 | |
|         p.cr().modify(|w| w.set_gcm_ccmph(0));
 | |
|         p.cr().modify(|w| w.set_crypen(true));
 | |
|         while p.cr().read().crypen() {}
 | |
|     }
 | |
| 
 | |
|     async fn init_phase<T: Instance, DmaIn, DmaOut>(&self, p: pac::cryp::Cryp, _cryp: &mut Cryp<'_, T, DmaIn, DmaOut>) {
 | |
|         p.cr().modify(|w| w.set_gcm_ccmph(0));
 | |
|         p.cr().modify(|w| w.set_crypen(true));
 | |
|         while p.cr().read().crypen() {}
 | |
|     }
 | |
| 
 | |
|     #[cfg(cryp_v2)]
 | |
|     fn pre_final(&self, p: pac::cryp::Cryp, dir: Direction, _padding_len: usize) -> [u32; 4] {
 | |
|         //Handle special GCM partial block process.
 | |
|         if dir == Direction::Encrypt {
 | |
|             p.cr().modify(|w| w.set_crypen(false));
 | |
|             p.cr().modify(|w| w.set_algomode3(false));
 | |
|             p.cr().modify(|w| w.set_algomode0(6));
 | |
|             let iv1r = p.csgcmccmr(7).read() - 1;
 | |
|             p.init(1).ivrr().write_value(iv1r);
 | |
|             p.cr().modify(|w| w.set_crypen(true));
 | |
|         }
 | |
|         [0; 4]
 | |
|     }
 | |
| 
 | |
|     #[cfg(any(cryp_v3, cryp_v4))]
 | |
|     fn pre_final(&self, p: pac::cryp::Cryp, _dir: Direction, padding_len: usize) -> [u32; 4] {
 | |
|         //Handle special GCM partial block process.
 | |
|         p.cr().modify(|w| w.set_npblb(padding_len as u8));
 | |
|         [0; 4]
 | |
|     }
 | |
| 
 | |
|     #[cfg(cryp_v2)]
 | |
|     fn post_final_blocking<T: Instance, DmaIn, DmaOut>(
 | |
|         &self,
 | |
|         p: pac::cryp::Cryp,
 | |
|         cryp: &Cryp<T, DmaIn, DmaOut>,
 | |
|         dir: Direction,
 | |
|         int_data: &mut [u8; AES_BLOCK_SIZE],
 | |
|         _temp1: [u32; 4],
 | |
|         padding_mask: [u8; AES_BLOCK_SIZE],
 | |
|     ) {
 | |
|         if dir == Direction::Encrypt {
 | |
|             //Handle special GCM partial block process.
 | |
|             p.cr().modify(|w| w.set_crypen(false));
 | |
|             p.cr().modify(|w| w.set_algomode3(true));
 | |
|             p.cr().modify(|w| w.set_algomode0(0));
 | |
|             for i in 0..AES_BLOCK_SIZE {
 | |
|                 int_data[i] = int_data[i] & padding_mask[i];
 | |
|             }
 | |
|             p.cr().modify(|w| w.set_crypen(true));
 | |
|             p.cr().modify(|w| w.set_gcm_ccmph(3));
 | |
| 
 | |
|             cryp.write_bytes_blocking(Self::BLOCK_SIZE, int_data);
 | |
|             cryp.read_bytes_blocking(Self::BLOCK_SIZE, int_data);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     #[cfg(cryp_v2)]
 | |
|     async fn post_final<T: Instance, DmaIn, DmaOut>(
 | |
|         &self,
 | |
|         p: pac::cryp::Cryp,
 | |
|         cryp: &mut Cryp<'_, T, DmaIn, DmaOut>,
 | |
|         dir: Direction,
 | |
|         int_data: &mut [u8; AES_BLOCK_SIZE],
 | |
|         _temp1: [u32; 4],
 | |
|         padding_mask: [u8; AES_BLOCK_SIZE],
 | |
|     ) where
 | |
|         DmaIn: crate::cryp::DmaIn<T>,
 | |
|         DmaOut: crate::cryp::DmaOut<T>,
 | |
|     {
 | |
|         if dir == Direction::Encrypt {
 | |
|             // Handle special GCM partial block process.
 | |
|             p.cr().modify(|w| w.set_crypen(false));
 | |
|             p.cr().modify(|w| w.set_algomode3(true));
 | |
|             p.cr().modify(|w| w.set_algomode0(0));
 | |
|             for i in 0..AES_BLOCK_SIZE {
 | |
|                 int_data[i] = int_data[i] & padding_mask[i];
 | |
|             }
 | |
|             p.cr().modify(|w| w.set_crypen(true));
 | |
|             p.cr().modify(|w| w.set_gcm_ccmph(3));
 | |
| 
 | |
|             let mut out_data: [u8; AES_BLOCK_SIZE] = [0; AES_BLOCK_SIZE];
 | |
| 
 | |
|             let read = Cryp::<T, DmaIn, DmaOut>::read_bytes(&mut cryp.outdma, Self::BLOCK_SIZE, &mut out_data);
 | |
|             let write = Cryp::<T, DmaIn, DmaOut>::write_bytes(&mut cryp.indma, Self::BLOCK_SIZE, int_data);
 | |
| 
 | |
|             embassy_futures::join::join(read, write).await;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c> CipherSized for AesGmac<'c, { 128 / 8 }> {}
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c> CipherSized for AesGmac<'c, { 192 / 8 }> {}
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c> CipherSized for AesGmac<'c, { 256 / 8 }> {}
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c, const KEY_SIZE: usize> CipherAuthenticated<16> for AesGmac<'c, KEY_SIZE> {}
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c, const KEY_SIZE: usize> IVSized for AesGmac<'c, KEY_SIZE> {}
 | |
| 
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| /// AES-CCM Cipher Mode
 | |
| pub struct AesCcm<'c, const KEY_SIZE: usize, const TAG_SIZE: usize, const IV_SIZE: usize> {
 | |
|     key: &'c [u8; KEY_SIZE],
 | |
|     aad_header: [u8; 6],
 | |
|     aad_header_len: usize,
 | |
|     block0: [u8; 16],
 | |
|     ctr: [u8; 16],
 | |
| }
 | |
| 
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize, const IV_SIZE: usize> AesCcm<'c, KEY_SIZE, TAG_SIZE, IV_SIZE> {
 | |
|     /// Constructs a new AES-CCM cipher for a cryptographic operation.
 | |
|     pub fn new(key: &'c [u8; KEY_SIZE], iv: &'c [u8; IV_SIZE], aad_len: usize, payload_len: usize) -> Self {
 | |
|         let mut aad_header: [u8; 6] = [0; 6];
 | |
|         let mut aad_header_len = 0;
 | |
|         let mut block0: [u8; 16] = [0; 16];
 | |
|         if aad_len != 0 {
 | |
|             if aad_len < 65280 {
 | |
|                 aad_header[0] = (aad_len >> 8) as u8 & 0xFF;
 | |
|                 aad_header[1] = aad_len as u8 & 0xFF;
 | |
|                 aad_header_len = 2;
 | |
|             } else {
 | |
|                 aad_header[0] = 0xFF;
 | |
|                 aad_header[1] = 0xFE;
 | |
|                 let aad_len_bytes: [u8; 4] = (aad_len as u32).to_be_bytes();
 | |
|                 aad_header[2] = aad_len_bytes[0];
 | |
|                 aad_header[3] = aad_len_bytes[1];
 | |
|                 aad_header[4] = aad_len_bytes[2];
 | |
|                 aad_header[5] = aad_len_bytes[3];
 | |
|                 aad_header_len = 6;
 | |
|             }
 | |
|         }
 | |
|         let total_aad_len = aad_header_len + aad_len;
 | |
|         let mut aad_padding_len = 16 - (total_aad_len % 16);
 | |
|         if aad_padding_len == 16 {
 | |
|             aad_padding_len = 0;
 | |
|         }
 | |
|         aad_header_len += aad_padding_len;
 | |
|         let total_aad_len_padded = aad_header_len + aad_len;
 | |
|         if total_aad_len_padded > 0 {
 | |
|             block0[0] = 0x40;
 | |
|         }
 | |
|         block0[0] |= ((((TAG_SIZE as u8) - 2) >> 1) & 0x07) << 3;
 | |
|         block0[0] |= ((15 - (iv.len() as u8)) - 1) & 0x07;
 | |
|         block0[1..1 + iv.len()].copy_from_slice(iv);
 | |
|         let payload_len_bytes: [u8; 4] = (payload_len as u32).to_be_bytes();
 | |
|         if iv.len() <= 11 {
 | |
|             block0[12] = payload_len_bytes[0];
 | |
|         } else if payload_len_bytes[0] > 0 {
 | |
|             panic!("Message is too large for given IV size.");
 | |
|         }
 | |
|         if iv.len() <= 12 {
 | |
|             block0[13] = payload_len_bytes[1];
 | |
|         } else if payload_len_bytes[1] > 0 {
 | |
|             panic!("Message is too large for given IV size.");
 | |
|         }
 | |
|         block0[14] = payload_len_bytes[2];
 | |
|         block0[15] = payload_len_bytes[3];
 | |
|         let mut ctr: [u8; 16] = [0; 16];
 | |
|         ctr[0] = block0[0] & 0x07;
 | |
|         ctr[1..1 + iv.len()].copy_from_slice(&block0[1..1 + iv.len()]);
 | |
|         ctr[15] = 0x01;
 | |
| 
 | |
|         return Self {
 | |
|             key: key,
 | |
|             aad_header: aad_header,
 | |
|             aad_header_len: aad_header_len,
 | |
|             block0: block0,
 | |
|             ctr: ctr,
 | |
|         };
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize, const IV_SIZE: usize> Cipher<'c>
 | |
|     for AesCcm<'c, KEY_SIZE, TAG_SIZE, IV_SIZE>
 | |
| {
 | |
|     const BLOCK_SIZE: usize = AES_BLOCK_SIZE;
 | |
| 
 | |
|     fn key(&self) -> &'c [u8] {
 | |
|         self.key
 | |
|     }
 | |
| 
 | |
|     fn iv(&self) -> &[u8] {
 | |
|         self.ctr.as_slice()
 | |
|     }
 | |
| 
 | |
|     fn set_algomode(&self, p: pac::cryp::Cryp) {
 | |
|         p.cr().modify(|w| w.set_algomode0(1));
 | |
|         p.cr().modify(|w| w.set_algomode3(true));
 | |
|     }
 | |
| 
 | |
|     fn init_phase_blocking<T: Instance, DmaIn, DmaOut>(&self, p: pac::cryp::Cryp, cryp: &Cryp<T, DmaIn, DmaOut>) {
 | |
|         p.cr().modify(|w| w.set_gcm_ccmph(0));
 | |
| 
 | |
|         cryp.write_bytes_blocking(Self::BLOCK_SIZE, &self.block0);
 | |
| 
 | |
|         p.cr().modify(|w| w.set_crypen(true));
 | |
|         while p.cr().read().crypen() {}
 | |
|     }
 | |
| 
 | |
|     async fn init_phase<T: Instance, DmaIn, DmaOut>(&self, p: pac::cryp::Cryp, cryp: &mut Cryp<'_, T, DmaIn, DmaOut>)
 | |
|     where
 | |
|         DmaIn: crate::cryp::DmaIn<T>,
 | |
|         DmaOut: crate::cryp::DmaOut<T>,
 | |
|     {
 | |
|         p.cr().modify(|w| w.set_gcm_ccmph(0));
 | |
| 
 | |
|         Cryp::<T, DmaIn, DmaOut>::write_bytes(&mut cryp.indma, Self::BLOCK_SIZE, &self.block0).await;
 | |
| 
 | |
|         p.cr().modify(|w| w.set_crypen(true));
 | |
|         while p.cr().read().crypen() {}
 | |
|     }
 | |
| 
 | |
|     fn get_header_block(&self) -> &[u8] {
 | |
|         return &self.aad_header[0..self.aad_header_len];
 | |
|     }
 | |
| 
 | |
|     #[cfg(cryp_v2)]
 | |
|     fn pre_final(&self, p: pac::cryp::Cryp, dir: Direction, _padding_len: usize) -> [u32; 4] {
 | |
|         //Handle special CCM partial block process.
 | |
|         let mut temp1 = [0; 4];
 | |
|         if dir == Direction::Decrypt {
 | |
|             p.cr().modify(|w| w.set_crypen(false));
 | |
|             let iv1temp = p.init(1).ivrr().read();
 | |
|             temp1[0] = p.csgcmccmr(0).read().swap_bytes();
 | |
|             temp1[1] = p.csgcmccmr(1).read().swap_bytes();
 | |
|             temp1[2] = p.csgcmccmr(2).read().swap_bytes();
 | |
|             temp1[3] = p.csgcmccmr(3).read().swap_bytes();
 | |
|             p.init(1).ivrr().write_value(iv1temp);
 | |
|             p.cr().modify(|w| w.set_algomode3(false));
 | |
|             p.cr().modify(|w| w.set_algomode0(6));
 | |
|             p.cr().modify(|w| w.set_crypen(true));
 | |
|         }
 | |
|         return temp1;
 | |
|     }
 | |
| 
 | |
|     #[cfg(any(cryp_v3, cryp_v4))]
 | |
|     fn pre_final(&self, p: pac::cryp::Cryp, _dir: Direction, padding_len: usize) -> [u32; 4] {
 | |
|         //Handle special GCM partial block process.
 | |
|         p.cr().modify(|w| w.set_npblb(padding_len as u8));
 | |
|         [0; 4]
 | |
|     }
 | |
| 
 | |
|     #[cfg(cryp_v2)]
 | |
|     fn post_final_blocking<T: Instance, DmaIn, DmaOut>(
 | |
|         &self,
 | |
|         p: pac::cryp::Cryp,
 | |
|         cryp: &Cryp<T, DmaIn, DmaOut>,
 | |
|         dir: Direction,
 | |
|         int_data: &mut [u8; AES_BLOCK_SIZE],
 | |
|         temp1: [u32; 4],
 | |
|         padding_mask: [u8; 16],
 | |
|     ) {
 | |
|         if dir == Direction::Decrypt {
 | |
|             //Handle special CCM partial block process.
 | |
|             let mut temp2 = [0; 4];
 | |
|             temp2[0] = p.csgcmccmr(0).read().swap_bytes();
 | |
|             temp2[1] = p.csgcmccmr(1).read().swap_bytes();
 | |
|             temp2[2] = p.csgcmccmr(2).read().swap_bytes();
 | |
|             temp2[3] = p.csgcmccmr(3).read().swap_bytes();
 | |
|             p.cr().modify(|w| w.set_algomode3(true));
 | |
|             p.cr().modify(|w| w.set_algomode0(1));
 | |
|             p.cr().modify(|w| w.set_gcm_ccmph(3));
 | |
|             // Header phase
 | |
|             p.cr().modify(|w| w.set_gcm_ccmph(1));
 | |
|             for i in 0..AES_BLOCK_SIZE {
 | |
|                 int_data[i] = int_data[i] & padding_mask[i];
 | |
|             }
 | |
|             let mut in_data: [u32; 4] = [0; 4];
 | |
|             for i in 0..in_data.len() {
 | |
|                 let mut int_bytes: [u8; 4] = [0; 4];
 | |
|                 int_bytes.copy_from_slice(&int_data[(i * 4)..(i * 4) + 4]);
 | |
|                 let int_word = u32::from_le_bytes(int_bytes);
 | |
|                 in_data[i] = int_word;
 | |
|                 in_data[i] = in_data[i] ^ temp1[i] ^ temp2[i];
 | |
|             }
 | |
|             cryp.write_words_blocking(Self::BLOCK_SIZE, &in_data);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     #[cfg(cryp_v2)]
 | |
|     async fn post_final<T: Instance, DmaIn, DmaOut>(
 | |
|         &self,
 | |
|         p: pac::cryp::Cryp,
 | |
|         cryp: &mut Cryp<'_, T, DmaIn, DmaOut>,
 | |
|         dir: Direction,
 | |
|         int_data: &mut [u8; AES_BLOCK_SIZE],
 | |
|         temp1: [u32; 4],
 | |
|         padding_mask: [u8; 16],
 | |
|     ) where
 | |
|         DmaIn: crate::cryp::DmaIn<T>,
 | |
|         DmaOut: crate::cryp::DmaOut<T>,
 | |
|     {
 | |
|         if dir == Direction::Decrypt {
 | |
|             //Handle special CCM partial block process.
 | |
|             let mut temp2 = [0; 4];
 | |
|             temp2[0] = p.csgcmccmr(0).read().swap_bytes();
 | |
|             temp2[1] = p.csgcmccmr(1).read().swap_bytes();
 | |
|             temp2[2] = p.csgcmccmr(2).read().swap_bytes();
 | |
|             temp2[3] = p.csgcmccmr(3).read().swap_bytes();
 | |
|             p.cr().modify(|w| w.set_algomode3(true));
 | |
|             p.cr().modify(|w| w.set_algomode0(1));
 | |
|             p.cr().modify(|w| w.set_gcm_ccmph(3));
 | |
|             // Header phase
 | |
|             p.cr().modify(|w| w.set_gcm_ccmph(1));
 | |
|             for i in 0..AES_BLOCK_SIZE {
 | |
|                 int_data[i] = int_data[i] & padding_mask[i];
 | |
|             }
 | |
|             let mut in_data: [u32; 4] = [0; 4];
 | |
|             for i in 0..in_data.len() {
 | |
|                 let mut int_bytes: [u8; 4] = [0; 4];
 | |
|                 int_bytes.copy_from_slice(&int_data[(i * 4)..(i * 4) + 4]);
 | |
|                 let int_word = u32::from_le_bytes(int_bytes);
 | |
|                 in_data[i] = int_word;
 | |
|                 in_data[i] = in_data[i] ^ temp1[i] ^ temp2[i];
 | |
|             }
 | |
|             Cryp::<T, DmaIn, DmaOut>::write_words(&mut cryp.indma, Self::BLOCK_SIZE, &in_data).await;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c, const TAG_SIZE: usize, const IV_SIZE: usize> CipherSized for AesCcm<'c, { 128 / 8 }, TAG_SIZE, IV_SIZE> {}
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c, const TAG_SIZE: usize, const IV_SIZE: usize> CipherSized for AesCcm<'c, { 192 / 8 }, TAG_SIZE, IV_SIZE> {}
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c, const TAG_SIZE: usize, const IV_SIZE: usize> CipherSized for AesCcm<'c, { 256 / 8 }, TAG_SIZE, IV_SIZE> {}
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c, const KEY_SIZE: usize, const IV_SIZE: usize> CipherAuthenticated<4> for AesCcm<'c, KEY_SIZE, 4, IV_SIZE> {}
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c, const KEY_SIZE: usize, const IV_SIZE: usize> CipherAuthenticated<6> for AesCcm<'c, KEY_SIZE, 6, IV_SIZE> {}
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c, const KEY_SIZE: usize, const IV_SIZE: usize> CipherAuthenticated<8> for AesCcm<'c, KEY_SIZE, 8, IV_SIZE> {}
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c, const KEY_SIZE: usize, const IV_SIZE: usize> CipherAuthenticated<10> for AesCcm<'c, KEY_SIZE, 10, IV_SIZE> {}
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c, const KEY_SIZE: usize, const IV_SIZE: usize> CipherAuthenticated<12> for AesCcm<'c, KEY_SIZE, 12, IV_SIZE> {}
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c, const KEY_SIZE: usize, const IV_SIZE: usize> CipherAuthenticated<14> for AesCcm<'c, KEY_SIZE, 14, IV_SIZE> {}
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c, const KEY_SIZE: usize, const IV_SIZE: usize> CipherAuthenticated<16> for AesCcm<'c, KEY_SIZE, 16, IV_SIZE> {}
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize> IVSized for AesCcm<'c, KEY_SIZE, TAG_SIZE, 7> {}
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize> IVSized for AesCcm<'c, KEY_SIZE, TAG_SIZE, 8> {}
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize> IVSized for AesCcm<'c, KEY_SIZE, TAG_SIZE, 9> {}
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize> IVSized for AesCcm<'c, KEY_SIZE, TAG_SIZE, 10> {}
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize> IVSized for AesCcm<'c, KEY_SIZE, TAG_SIZE, 11> {}
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize> IVSized for AesCcm<'c, KEY_SIZE, TAG_SIZE, 12> {}
 | |
| #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
| impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize> IVSized for AesCcm<'c, KEY_SIZE, TAG_SIZE, 13> {}
 | |
| 
 | |
| #[allow(dead_code)]
 | |
| /// Holds the state information for a cipher operation.
 | |
| /// Allows suspending/resuming of cipher operations.
 | |
| pub struct Context<'c, C: Cipher<'c> + CipherSized> {
 | |
|     phantom_data: PhantomData<&'c C>,
 | |
|     cipher: &'c C,
 | |
|     dir: Direction,
 | |
|     last_block_processed: bool,
 | |
|     header_processed: bool,
 | |
|     aad_complete: bool,
 | |
|     cr: u32,
 | |
|     iv: [u32; 4],
 | |
|     csgcmccm: [u32; 8],
 | |
|     csgcm: [u32; 8],
 | |
|     header_len: u64,
 | |
|     payload_len: u64,
 | |
|     aad_buffer: [u8; 16],
 | |
|     aad_buffer_len: usize,
 | |
| }
 | |
| 
 | |
| /// Selects whether the crypto processor operates in encryption or decryption mode.
 | |
| #[derive(PartialEq, Clone, Copy)]
 | |
| pub enum Direction {
 | |
|     /// Encryption mode
 | |
|     Encrypt,
 | |
|     /// Decryption mode
 | |
|     Decrypt,
 | |
| }
 | |
| 
 | |
| /// Crypto Accelerator Driver
 | |
| pub struct Cryp<'d, T: Instance, DmaIn = NoDma, DmaOut = NoDma> {
 | |
|     _peripheral: PeripheralRef<'d, T>,
 | |
|     indma: PeripheralRef<'d, DmaIn>,
 | |
|     outdma: PeripheralRef<'d, DmaOut>,
 | |
| }
 | |
| 
 | |
| impl<'d, T: Instance, DmaIn, DmaOut> Cryp<'d, T, DmaIn, DmaOut> {
 | |
|     /// Create a new CRYP driver.
 | |
|     pub fn new(
 | |
|         peri: impl Peripheral<P = T> + 'd,
 | |
|         indma: impl Peripheral<P = DmaIn> + 'd,
 | |
|         outdma: impl Peripheral<P = DmaOut> + 'd,
 | |
|         _irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
 | |
|     ) -> Self {
 | |
|         rcc::enable_and_reset::<T>();
 | |
|         into_ref!(peri, indma, outdma);
 | |
|         let instance = Self {
 | |
|             _peripheral: peri,
 | |
|             indma: indma,
 | |
|             outdma: outdma,
 | |
|         };
 | |
| 
 | |
|         T::Interrupt::unpend();
 | |
|         unsafe { T::Interrupt::enable() };
 | |
| 
 | |
|         instance
 | |
|     }
 | |
| 
 | |
|     /// Start a new encrypt or decrypt operation for the given cipher.
 | |
|     pub fn start_blocking<'c, C: Cipher<'c> + CipherSized + IVSized>(
 | |
|         &self,
 | |
|         cipher: &'c C,
 | |
|         dir: Direction,
 | |
|     ) -> Context<'c, C> {
 | |
|         let mut ctx: Context<'c, C> = Context {
 | |
|             dir,
 | |
|             last_block_processed: false,
 | |
|             cr: 0,
 | |
|             iv: [0; 4],
 | |
|             csgcmccm: [0; 8],
 | |
|             csgcm: [0; 8],
 | |
|             aad_complete: false,
 | |
|             header_len: 0,
 | |
|             payload_len: 0,
 | |
|             cipher: cipher,
 | |
|             phantom_data: PhantomData,
 | |
|             header_processed: false,
 | |
|             aad_buffer: [0; 16],
 | |
|             aad_buffer_len: 0,
 | |
|         };
 | |
| 
 | |
|         T::regs().cr().modify(|w| w.set_crypen(false));
 | |
| 
 | |
|         let key = ctx.cipher.key();
 | |
| 
 | |
|         if key.len() == (128 / 8) {
 | |
|             T::regs().cr().modify(|w| w.set_keysize(0));
 | |
|         } else if key.len() == (192 / 8) {
 | |
|             T::regs().cr().modify(|w| w.set_keysize(1));
 | |
|         } else if key.len() == (256 / 8) {
 | |
|             T::regs().cr().modify(|w| w.set_keysize(2));
 | |
|         }
 | |
| 
 | |
|         self.load_key(key);
 | |
| 
 | |
|         // Set data type to 8-bit. This will match software implementations.
 | |
|         T::regs().cr().modify(|w| w.set_datatype(2));
 | |
| 
 | |
|         ctx.cipher.prepare_key(T::regs());
 | |
| 
 | |
|         ctx.cipher.set_algomode(T::regs());
 | |
| 
 | |
|         // Set encrypt/decrypt
 | |
|         if dir == Direction::Encrypt {
 | |
|             T::regs().cr().modify(|w| w.set_algodir(false));
 | |
|         } else {
 | |
|             T::regs().cr().modify(|w| w.set_algodir(true));
 | |
|         }
 | |
| 
 | |
|         // Load the IV into the registers.
 | |
|         let iv = ctx.cipher.iv();
 | |
|         let mut full_iv: [u8; 16] = [0; 16];
 | |
|         full_iv[0..iv.len()].copy_from_slice(iv);
 | |
|         let mut iv_idx = 0;
 | |
|         let mut iv_word: [u8; 4] = [0; 4];
 | |
|         iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]);
 | |
|         iv_idx += 4;
 | |
|         T::regs().init(0).ivlr().write_value(u32::from_be_bytes(iv_word));
 | |
|         iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]);
 | |
|         iv_idx += 4;
 | |
|         T::regs().init(0).ivrr().write_value(u32::from_be_bytes(iv_word));
 | |
|         iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]);
 | |
|         iv_idx += 4;
 | |
|         T::regs().init(1).ivlr().write_value(u32::from_be_bytes(iv_word));
 | |
|         iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]);
 | |
|         T::regs().init(1).ivrr().write_value(u32::from_be_bytes(iv_word));
 | |
| 
 | |
|         // Flush in/out FIFOs
 | |
|         T::regs().cr().modify(|w| w.fflush());
 | |
| 
 | |
|         ctx.cipher.init_phase_blocking(T::regs(), self);
 | |
| 
 | |
|         self.store_context(&mut ctx);
 | |
| 
 | |
|         ctx
 | |
|     }
 | |
| 
 | |
|     /// Start a new encrypt or decrypt operation for the given cipher.
 | |
|     pub async fn start<'c, C: Cipher<'c> + CipherSized + IVSized>(
 | |
|         &mut self,
 | |
|         cipher: &'c C,
 | |
|         dir: Direction,
 | |
|     ) -> Context<'c, C>
 | |
|     where
 | |
|         DmaIn: crate::cryp::DmaIn<T>,
 | |
|         DmaOut: crate::cryp::DmaOut<T>,
 | |
|     {
 | |
|         let mut ctx: Context<'c, C> = Context {
 | |
|             dir,
 | |
|             last_block_processed: false,
 | |
|             cr: 0,
 | |
|             iv: [0; 4],
 | |
|             csgcmccm: [0; 8],
 | |
|             csgcm: [0; 8],
 | |
|             aad_complete: false,
 | |
|             header_len: 0,
 | |
|             payload_len: 0,
 | |
|             cipher: cipher,
 | |
|             phantom_data: PhantomData,
 | |
|             header_processed: false,
 | |
|             aad_buffer: [0; 16],
 | |
|             aad_buffer_len: 0,
 | |
|         };
 | |
| 
 | |
|         T::regs().cr().modify(|w| w.set_crypen(false));
 | |
| 
 | |
|         let key = ctx.cipher.key();
 | |
| 
 | |
|         if key.len() == (128 / 8) {
 | |
|             T::regs().cr().modify(|w| w.set_keysize(0));
 | |
|         } else if key.len() == (192 / 8) {
 | |
|             T::regs().cr().modify(|w| w.set_keysize(1));
 | |
|         } else if key.len() == (256 / 8) {
 | |
|             T::regs().cr().modify(|w| w.set_keysize(2));
 | |
|         }
 | |
| 
 | |
|         self.load_key(key);
 | |
| 
 | |
|         // Set data type to 8-bit. This will match software implementations.
 | |
|         T::regs().cr().modify(|w| w.set_datatype(2));
 | |
| 
 | |
|         ctx.cipher.prepare_key(T::regs());
 | |
| 
 | |
|         ctx.cipher.set_algomode(T::regs());
 | |
| 
 | |
|         // Set encrypt/decrypt
 | |
|         if dir == Direction::Encrypt {
 | |
|             T::regs().cr().modify(|w| w.set_algodir(false));
 | |
|         } else {
 | |
|             T::regs().cr().modify(|w| w.set_algodir(true));
 | |
|         }
 | |
| 
 | |
|         // Load the IV into the registers.
 | |
|         let iv = ctx.cipher.iv();
 | |
|         let mut full_iv: [u8; 16] = [0; 16];
 | |
|         full_iv[0..iv.len()].copy_from_slice(iv);
 | |
|         let mut iv_idx = 0;
 | |
|         let mut iv_word: [u8; 4] = [0; 4];
 | |
|         iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]);
 | |
|         iv_idx += 4;
 | |
|         T::regs().init(0).ivlr().write_value(u32::from_be_bytes(iv_word));
 | |
|         iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]);
 | |
|         iv_idx += 4;
 | |
|         T::regs().init(0).ivrr().write_value(u32::from_be_bytes(iv_word));
 | |
|         iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]);
 | |
|         iv_idx += 4;
 | |
|         T::regs().init(1).ivlr().write_value(u32::from_be_bytes(iv_word));
 | |
|         iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]);
 | |
|         T::regs().init(1).ivrr().write_value(u32::from_be_bytes(iv_word));
 | |
| 
 | |
|         // Flush in/out FIFOs
 | |
|         T::regs().cr().modify(|w| w.fflush());
 | |
| 
 | |
|         ctx.cipher.init_phase(T::regs(), self).await;
 | |
| 
 | |
|         self.store_context(&mut ctx);
 | |
| 
 | |
|         ctx
 | |
|     }
 | |
| 
 | |
|     #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
|     /// Controls the header phase of cipher processing.
 | |
|     /// This function is only valid for authenticated ciphers including GCM, CCM, and GMAC.
 | |
|     /// All additional associated data (AAD) must be supplied to this function prior to starting the payload phase with `payload_blocking`.
 | |
|     /// The AAD must be supplied in multiples of the block size (128-bits for AES, 64-bits for DES), except when supplying the last block.
 | |
|     /// When supplying the last block of AAD, `last_aad_block` must be `true`.
 | |
|     pub fn aad_blocking<
 | |
|         'c,
 | |
|         const TAG_SIZE: usize,
 | |
|         C: Cipher<'c> + CipherSized + IVSized + CipherAuthenticated<TAG_SIZE>,
 | |
|     >(
 | |
|         &self,
 | |
|         ctx: &mut Context<'c, C>,
 | |
|         aad: &[u8],
 | |
|         last_aad_block: bool,
 | |
|     ) {
 | |
|         self.load_context(ctx);
 | |
| 
 | |
|         // Perform checks for correctness.
 | |
|         if ctx.aad_complete {
 | |
|             panic!("Cannot update AAD after starting payload!")
 | |
|         }
 | |
| 
 | |
|         ctx.header_len += aad.len() as u64;
 | |
| 
 | |
|         // Header phase
 | |
|         T::regs().cr().modify(|w| w.set_crypen(false));
 | |
|         T::regs().cr().modify(|w| w.set_gcm_ccmph(1));
 | |
|         T::regs().cr().modify(|w| w.set_crypen(true));
 | |
| 
 | |
|         // First write the header B1 block if not yet written.
 | |
|         if !ctx.header_processed {
 | |
|             ctx.header_processed = true;
 | |
|             let header = ctx.cipher.get_header_block();
 | |
|             ctx.aad_buffer[0..header.len()].copy_from_slice(header);
 | |
|             ctx.aad_buffer_len += header.len();
 | |
|         }
 | |
| 
 | |
|         // Fill the header block to make a full block.
 | |
|         let len_to_copy = min(aad.len(), C::BLOCK_SIZE - ctx.aad_buffer_len);
 | |
|         ctx.aad_buffer[ctx.aad_buffer_len..ctx.aad_buffer_len + len_to_copy].copy_from_slice(&aad[..len_to_copy]);
 | |
|         ctx.aad_buffer_len += len_to_copy;
 | |
|         ctx.aad_buffer[ctx.aad_buffer_len..].fill(0);
 | |
|         let mut aad_len_remaining = aad.len() - len_to_copy;
 | |
| 
 | |
|         if ctx.aad_buffer_len < C::BLOCK_SIZE {
 | |
|             // The buffer isn't full and this is the last buffer, so process it as is (already padded).
 | |
|             if last_aad_block {
 | |
|                 self.write_bytes_blocking(C::BLOCK_SIZE, &ctx.aad_buffer);
 | |
|                 // Block until input FIFO is empty.
 | |
|                 while !T::regs().sr().read().ifem() {}
 | |
| 
 | |
|                 // Switch to payload phase.
 | |
|                 ctx.aad_complete = true;
 | |
|                 T::regs().cr().modify(|w| w.set_crypen(false));
 | |
|                 T::regs().cr().modify(|w| w.set_gcm_ccmph(2));
 | |
|                 T::regs().cr().modify(|w| w.fflush());
 | |
|             } else {
 | |
|                 // Just return because we don't yet have a full block to process.
 | |
|                 return;
 | |
|             }
 | |
|         } else {
 | |
|             // Load the full block from the buffer.
 | |
|             self.write_bytes_blocking(C::BLOCK_SIZE, &ctx.aad_buffer);
 | |
|             // Block until input FIFO is empty.
 | |
|             while !T::regs().sr().read().ifem() {}
 | |
|         }
 | |
| 
 | |
|         // Handle a partial block that is passed in.
 | |
|         ctx.aad_buffer_len = 0;
 | |
|         let leftovers = aad_len_remaining % C::BLOCK_SIZE;
 | |
|         ctx.aad_buffer[..leftovers].copy_from_slice(&aad[aad.len() - leftovers..aad.len()]);
 | |
|         ctx.aad_buffer_len += leftovers;
 | |
|         ctx.aad_buffer[ctx.aad_buffer_len..].fill(0);
 | |
|         aad_len_remaining -= leftovers;
 | |
|         assert_eq!(aad_len_remaining % C::BLOCK_SIZE, 0);
 | |
| 
 | |
|         // Load full data blocks into core.
 | |
|         let num_full_blocks = aad_len_remaining / C::BLOCK_SIZE;
 | |
|         let start_index = len_to_copy;
 | |
|         let end_index = start_index + (C::BLOCK_SIZE * num_full_blocks);
 | |
|         self.write_bytes_blocking(C::BLOCK_SIZE, &aad[start_index..end_index]);
 | |
| 
 | |
|         if last_aad_block {
 | |
|             if leftovers > 0 {
 | |
|                 self.write_bytes_blocking(C::BLOCK_SIZE, &ctx.aad_buffer);
 | |
|             }
 | |
|             // Switch to payload phase.
 | |
|             ctx.aad_complete = true;
 | |
|             T::regs().cr().modify(|w| w.set_crypen(false));
 | |
|             T::regs().cr().modify(|w| w.set_gcm_ccmph(2));
 | |
|             T::regs().cr().modify(|w| w.fflush());
 | |
|         }
 | |
| 
 | |
|         self.store_context(ctx);
 | |
|     }
 | |
| 
 | |
|     #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
|     /// Controls the header phase of cipher processing.
 | |
|     /// This function is only valid for authenticated ciphers including GCM, CCM, and GMAC.
 | |
|     /// All additional associated data (AAD) must be supplied to this function prior to starting the payload phase with `payload`.
 | |
|     /// The AAD must be supplied in multiples of the block size (128-bits for AES, 64-bits for DES), except when supplying the last block.
 | |
|     /// When supplying the last block of AAD, `last_aad_block` must be `true`.
 | |
|     pub async fn aad<'c, const TAG_SIZE: usize, C: Cipher<'c> + CipherSized + IVSized + CipherAuthenticated<TAG_SIZE>>(
 | |
|         &mut self,
 | |
|         ctx: &mut Context<'c, C>,
 | |
|         aad: &[u8],
 | |
|         last_aad_block: bool,
 | |
|     ) where
 | |
|         DmaIn: crate::cryp::DmaIn<T>,
 | |
|         DmaOut: crate::cryp::DmaOut<T>,
 | |
|     {
 | |
|         self.load_context(ctx);
 | |
| 
 | |
|         // Perform checks for correctness.
 | |
|         if ctx.aad_complete {
 | |
|             panic!("Cannot update AAD after starting payload!")
 | |
|         }
 | |
| 
 | |
|         ctx.header_len += aad.len() as u64;
 | |
| 
 | |
|         // Header phase
 | |
|         T::regs().cr().modify(|w| w.set_crypen(false));
 | |
|         T::regs().cr().modify(|w| w.set_gcm_ccmph(1));
 | |
|         T::regs().cr().modify(|w| w.set_crypen(true));
 | |
| 
 | |
|         // First write the header B1 block if not yet written.
 | |
|         if !ctx.header_processed {
 | |
|             ctx.header_processed = true;
 | |
|             let header = ctx.cipher.get_header_block();
 | |
|             ctx.aad_buffer[0..header.len()].copy_from_slice(header);
 | |
|             ctx.aad_buffer_len += header.len();
 | |
|         }
 | |
| 
 | |
|         // Fill the header block to make a full block.
 | |
|         let len_to_copy = min(aad.len(), C::BLOCK_SIZE - ctx.aad_buffer_len);
 | |
|         ctx.aad_buffer[ctx.aad_buffer_len..ctx.aad_buffer_len + len_to_copy].copy_from_slice(&aad[..len_to_copy]);
 | |
|         ctx.aad_buffer_len += len_to_copy;
 | |
|         ctx.aad_buffer[ctx.aad_buffer_len..].fill(0);
 | |
|         let mut aad_len_remaining = aad.len() - len_to_copy;
 | |
| 
 | |
|         if ctx.aad_buffer_len < C::BLOCK_SIZE {
 | |
|             // The buffer isn't full and this is the last buffer, so process it as is (already padded).
 | |
|             if last_aad_block {
 | |
|                 Self::write_bytes(&mut self.indma, C::BLOCK_SIZE, &ctx.aad_buffer).await;
 | |
|                 assert_eq!(T::regs().sr().read().ifem(), true);
 | |
| 
 | |
|                 // Switch to payload phase.
 | |
|                 ctx.aad_complete = true;
 | |
|                 T::regs().cr().modify(|w| w.set_crypen(false));
 | |
|                 T::regs().cr().modify(|w| w.set_gcm_ccmph(2));
 | |
|                 T::regs().cr().modify(|w| w.fflush());
 | |
|             } else {
 | |
|                 // Just return because we don't yet have a full block to process.
 | |
|                 return;
 | |
|             }
 | |
|         } else {
 | |
|             // Load the full block from the buffer.
 | |
|             Self::write_bytes(&mut self.indma, C::BLOCK_SIZE, &ctx.aad_buffer).await;
 | |
|             assert_eq!(T::regs().sr().read().ifem(), true);
 | |
|         }
 | |
| 
 | |
|         // Handle a partial block that is passed in.
 | |
|         ctx.aad_buffer_len = 0;
 | |
|         let leftovers = aad_len_remaining % C::BLOCK_SIZE;
 | |
|         ctx.aad_buffer[..leftovers].copy_from_slice(&aad[aad.len() - leftovers..aad.len()]);
 | |
|         ctx.aad_buffer_len += leftovers;
 | |
|         ctx.aad_buffer[ctx.aad_buffer_len..].fill(0);
 | |
|         aad_len_remaining -= leftovers;
 | |
|         assert_eq!(aad_len_remaining % C::BLOCK_SIZE, 0);
 | |
| 
 | |
|         // Load full data blocks into core.
 | |
|         let num_full_blocks = aad_len_remaining / C::BLOCK_SIZE;
 | |
|         let start_index = len_to_copy;
 | |
|         let end_index = start_index + (C::BLOCK_SIZE * num_full_blocks);
 | |
|         Self::write_bytes(&mut self.indma, C::BLOCK_SIZE, &aad[start_index..end_index]).await;
 | |
| 
 | |
|         if last_aad_block {
 | |
|             if leftovers > 0 {
 | |
|                 Self::write_bytes(&mut self.indma, C::BLOCK_SIZE, &ctx.aad_buffer).await;
 | |
|                 assert_eq!(T::regs().sr().read().ifem(), true);
 | |
|             }
 | |
|             // Switch to payload phase.
 | |
|             ctx.aad_complete = true;
 | |
|             T::regs().cr().modify(|w| w.set_crypen(false));
 | |
|             T::regs().cr().modify(|w| w.set_gcm_ccmph(2));
 | |
|             T::regs().cr().modify(|w| w.fflush());
 | |
|         }
 | |
| 
 | |
|         self.store_context(ctx);
 | |
|     }
 | |
| 
 | |
|     /// Performs encryption/decryption on the provided context.
 | |
|     /// The context determines algorithm, mode, and state of the crypto accelerator.
 | |
|     /// When the last piece of data is supplied, `last_block` should be `true`.
 | |
|     /// This function panics under various mismatches of parameters.
 | |
|     /// Output buffer must be at least as long as the input buffer.
 | |
|     /// Data must be a multiple of block size (128-bits for AES, 64-bits for DES) for CBC and ECB modes.
 | |
|     /// Padding or ciphertext stealing must be managed by the application for these modes.
 | |
|     /// Data must also be a multiple of block size unless `last_block` is `true`.
 | |
|     pub fn payload_blocking<'c, C: Cipher<'c> + CipherSized + IVSized>(
 | |
|         &self,
 | |
|         ctx: &mut Context<'c, C>,
 | |
|         input: &[u8],
 | |
|         output: &mut [u8],
 | |
|         last_block: bool,
 | |
|     ) {
 | |
|         self.load_context(ctx);
 | |
| 
 | |
|         let last_block_remainder = input.len() % C::BLOCK_SIZE;
 | |
| 
 | |
|         // Perform checks for correctness.
 | |
|         if !ctx.aad_complete && ctx.header_len > 0 {
 | |
|             panic!("Additional associated data must be processed first!");
 | |
|         } else if !ctx.aad_complete {
 | |
|             #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
|             {
 | |
|                 ctx.aad_complete = true;
 | |
|                 T::regs().cr().modify(|w| w.set_crypen(false));
 | |
|                 T::regs().cr().modify(|w| w.set_gcm_ccmph(2));
 | |
|                 T::regs().cr().modify(|w| w.fflush());
 | |
|                 T::regs().cr().modify(|w| w.set_crypen(true));
 | |
|             }
 | |
|         }
 | |
|         if ctx.last_block_processed {
 | |
|             panic!("The last block has already been processed!");
 | |
|         }
 | |
|         if input.len() > output.len() {
 | |
|             panic!("Output buffer length must match input length.");
 | |
|         }
 | |
|         if !last_block {
 | |
|             if last_block_remainder != 0 {
 | |
|                 panic!("Input length must be a multiple of {} bytes.", C::BLOCK_SIZE);
 | |
|             }
 | |
|         }
 | |
|         if C::REQUIRES_PADDING {
 | |
|             if last_block_remainder != 0 {
 | |
|                 panic!("Input must be a multiple of {} bytes in ECB and CBC modes. Consider padding or ciphertext stealing.", C::BLOCK_SIZE);
 | |
|             }
 | |
|         }
 | |
|         if last_block {
 | |
|             ctx.last_block_processed = true;
 | |
|         }
 | |
| 
 | |
|         // Load data into core, block by block.
 | |
|         let num_full_blocks = input.len() / C::BLOCK_SIZE;
 | |
|         for block in 0..num_full_blocks {
 | |
|             let index = block * C::BLOCK_SIZE;
 | |
|             // Write block in
 | |
|             self.write_bytes_blocking(C::BLOCK_SIZE, &input[index..index + C::BLOCK_SIZE]);
 | |
|             // Read block out
 | |
|             self.read_bytes_blocking(C::BLOCK_SIZE, &mut output[index..index + C::BLOCK_SIZE]);
 | |
|         }
 | |
| 
 | |
|         // Handle the final block, which is incomplete.
 | |
|         if last_block_remainder > 0 {
 | |
|             let padding_len = C::BLOCK_SIZE - last_block_remainder;
 | |
|             let temp1 = ctx.cipher.pre_final(T::regs(), ctx.dir, padding_len);
 | |
| 
 | |
|             let mut intermediate_data: [u8; AES_BLOCK_SIZE] = [0; AES_BLOCK_SIZE];
 | |
|             let mut last_block: [u8; AES_BLOCK_SIZE] = [0; AES_BLOCK_SIZE];
 | |
|             last_block[..last_block_remainder].copy_from_slice(&input[input.len() - last_block_remainder..input.len()]);
 | |
|             self.write_bytes_blocking(C::BLOCK_SIZE, &last_block);
 | |
|             self.read_bytes_blocking(C::BLOCK_SIZE, &mut intermediate_data);
 | |
| 
 | |
|             // Handle the last block depending on mode.
 | |
|             let output_len = output.len();
 | |
|             output[output_len - last_block_remainder..output_len]
 | |
|                 .copy_from_slice(&intermediate_data[0..last_block_remainder]);
 | |
| 
 | |
|             let mut mask: [u8; 16] = [0; 16];
 | |
|             mask[..last_block_remainder].fill(0xFF);
 | |
|             ctx.cipher
 | |
|                 .post_final_blocking(T::regs(), self, ctx.dir, &mut intermediate_data, temp1, mask);
 | |
|         }
 | |
| 
 | |
|         ctx.payload_len += input.len() as u64;
 | |
| 
 | |
|         self.store_context(ctx);
 | |
|     }
 | |
| 
 | |
|     /// Performs encryption/decryption on the provided context.
 | |
|     /// The context determines algorithm, mode, and state of the crypto accelerator.
 | |
|     /// When the last piece of data is supplied, `last_block` should be `true`.
 | |
|     /// This function panics under various mismatches of parameters.
 | |
|     /// Output buffer must be at least as long as the input buffer.
 | |
|     /// Data must be a multiple of block size (128-bits for AES, 64-bits for DES) for CBC and ECB modes.
 | |
|     /// Padding or ciphertext stealing must be managed by the application for these modes.
 | |
|     /// Data must also be a multiple of block size unless `last_block` is `true`.
 | |
|     pub async fn payload<'c, C: Cipher<'c> + CipherSized + IVSized>(
 | |
|         &mut self,
 | |
|         ctx: &mut Context<'c, C>,
 | |
|         input: &[u8],
 | |
|         output: &mut [u8],
 | |
|         last_block: bool,
 | |
|     ) where
 | |
|         DmaIn: crate::cryp::DmaIn<T>,
 | |
|         DmaOut: crate::cryp::DmaOut<T>,
 | |
|     {
 | |
|         self.load_context(ctx);
 | |
| 
 | |
|         let last_block_remainder = input.len() % C::BLOCK_SIZE;
 | |
| 
 | |
|         // Perform checks for correctness.
 | |
|         if !ctx.aad_complete && ctx.header_len > 0 {
 | |
|             panic!("Additional associated data must be processed first!");
 | |
|         } else if !ctx.aad_complete {
 | |
|             #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
|             {
 | |
|                 ctx.aad_complete = true;
 | |
|                 T::regs().cr().modify(|w| w.set_crypen(false));
 | |
|                 T::regs().cr().modify(|w| w.set_gcm_ccmph(2));
 | |
|                 T::regs().cr().modify(|w| w.fflush());
 | |
|                 T::regs().cr().modify(|w| w.set_crypen(true));
 | |
|             }
 | |
|         }
 | |
|         if ctx.last_block_processed {
 | |
|             panic!("The last block has already been processed!");
 | |
|         }
 | |
|         if input.len() > output.len() {
 | |
|             panic!("Output buffer length must match input length.");
 | |
|         }
 | |
|         if !last_block {
 | |
|             if last_block_remainder != 0 {
 | |
|                 panic!("Input length must be a multiple of {} bytes.", C::BLOCK_SIZE);
 | |
|             }
 | |
|         }
 | |
|         if C::REQUIRES_PADDING {
 | |
|             if last_block_remainder != 0 {
 | |
|                 panic!("Input must be a multiple of {} bytes in ECB and CBC modes. Consider padding or ciphertext stealing.", C::BLOCK_SIZE);
 | |
|             }
 | |
|         }
 | |
|         if last_block {
 | |
|             ctx.last_block_processed = true;
 | |
|         }
 | |
| 
 | |
|         // Load data into core, block by block.
 | |
|         let num_full_blocks = input.len() / C::BLOCK_SIZE;
 | |
|         for block in 0..num_full_blocks {
 | |
|             let index = block * C::BLOCK_SIZE;
 | |
|             // Read block out
 | |
|             let read = Self::read_bytes(
 | |
|                 &mut self.outdma,
 | |
|                 C::BLOCK_SIZE,
 | |
|                 &mut output[index..index + C::BLOCK_SIZE],
 | |
|             );
 | |
|             // Write block in
 | |
|             let write = Self::write_bytes(&mut self.indma, C::BLOCK_SIZE, &input[index..index + C::BLOCK_SIZE]);
 | |
|             embassy_futures::join::join(read, write).await;
 | |
|         }
 | |
| 
 | |
|         // Handle the final block, which is incomplete.
 | |
|         if last_block_remainder > 0 {
 | |
|             let padding_len = C::BLOCK_SIZE - last_block_remainder;
 | |
|             let temp1 = ctx.cipher.pre_final(T::regs(), ctx.dir, padding_len);
 | |
| 
 | |
|             let mut intermediate_data: [u8; AES_BLOCK_SIZE] = [0; AES_BLOCK_SIZE];
 | |
|             let mut last_block: [u8; AES_BLOCK_SIZE] = [0; AES_BLOCK_SIZE];
 | |
|             last_block[..last_block_remainder].copy_from_slice(&input[input.len() - last_block_remainder..input.len()]);
 | |
|             let read = Self::read_bytes(&mut self.outdma, C::BLOCK_SIZE, &mut intermediate_data);
 | |
|             let write = Self::write_bytes(&mut self.indma, C::BLOCK_SIZE, &last_block);
 | |
|             embassy_futures::join::join(read, write).await;
 | |
| 
 | |
|             // Handle the last block depending on mode.
 | |
|             let output_len = output.len();
 | |
|             output[output_len - last_block_remainder..output_len]
 | |
|                 .copy_from_slice(&intermediate_data[0..last_block_remainder]);
 | |
| 
 | |
|             let mut mask: [u8; 16] = [0; 16];
 | |
|             mask[..last_block_remainder].fill(0xFF);
 | |
|             ctx.cipher
 | |
|                 .post_final(T::regs(), self, ctx.dir, &mut intermediate_data, temp1, mask)
 | |
|                 .await;
 | |
|         }
 | |
| 
 | |
|         ctx.payload_len += input.len() as u64;
 | |
| 
 | |
|         self.store_context(ctx);
 | |
|     }
 | |
| 
 | |
|     #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
|     /// Generates an authentication tag for authenticated ciphers including GCM, CCM, and GMAC.
 | |
|     /// Called after the all data has been encrypted/decrypted by `payload`.
 | |
|     pub fn finish_blocking<
 | |
|         'c,
 | |
|         const TAG_SIZE: usize,
 | |
|         C: Cipher<'c> + CipherSized + IVSized + CipherAuthenticated<TAG_SIZE>,
 | |
|     >(
 | |
|         &self,
 | |
|         mut ctx: Context<'c, C>,
 | |
|     ) -> [u8; TAG_SIZE] {
 | |
|         self.load_context(&mut ctx);
 | |
| 
 | |
|         T::regs().cr().modify(|w| w.set_crypen(false));
 | |
|         T::regs().cr().modify(|w| w.set_gcm_ccmph(3));
 | |
|         T::regs().cr().modify(|w| w.set_crypen(true));
 | |
| 
 | |
|         let headerlen1: u32 = ((ctx.header_len * 8) >> 32) as u32;
 | |
|         let headerlen2: u32 = (ctx.header_len * 8) as u32;
 | |
|         let payloadlen1: u32 = ((ctx.payload_len * 8) >> 32) as u32;
 | |
|         let payloadlen2: u32 = (ctx.payload_len * 8) as u32;
 | |
| 
 | |
|         #[cfg(cryp_v2)]
 | |
|         let footer: [u32; 4] = [
 | |
|             headerlen1.swap_bytes(),
 | |
|             headerlen2.swap_bytes(),
 | |
|             payloadlen1.swap_bytes(),
 | |
|             payloadlen2.swap_bytes(),
 | |
|         ];
 | |
|         #[cfg(any(cryp_v3, cryp_v4))]
 | |
|         let footer: [u32; 4] = [headerlen1, headerlen2, payloadlen1, payloadlen2];
 | |
| 
 | |
|         self.write_words_blocking(C::BLOCK_SIZE, &footer);
 | |
| 
 | |
|         while !T::regs().sr().read().ofne() {}
 | |
| 
 | |
|         let mut full_tag: [u8; 16] = [0; 16];
 | |
|         self.read_bytes_blocking(C::BLOCK_SIZE, &mut full_tag);
 | |
|         let mut tag: [u8; TAG_SIZE] = [0; TAG_SIZE];
 | |
|         tag.copy_from_slice(&full_tag[0..TAG_SIZE]);
 | |
| 
 | |
|         T::regs().cr().modify(|w| w.set_crypen(false));
 | |
| 
 | |
|         tag
 | |
|     }
 | |
| 
 | |
|     #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
|     // Generates an authentication tag for authenticated ciphers including GCM, CCM, and GMAC.
 | |
|     /// Called after the all data has been encrypted/decrypted by `payload`.
 | |
|     pub async fn finish<
 | |
|         'c,
 | |
|         const TAG_SIZE: usize,
 | |
|         C: Cipher<'c> + CipherSized + IVSized + CipherAuthenticated<TAG_SIZE>,
 | |
|     >(
 | |
|         &mut self,
 | |
|         mut ctx: Context<'c, C>,
 | |
|     ) -> [u8; TAG_SIZE]
 | |
|     where
 | |
|         DmaIn: crate::cryp::DmaIn<T>,
 | |
|         DmaOut: crate::cryp::DmaOut<T>,
 | |
|     {
 | |
|         self.load_context(&mut ctx);
 | |
| 
 | |
|         T::regs().cr().modify(|w| w.set_crypen(false));
 | |
|         T::regs().cr().modify(|w| w.set_gcm_ccmph(3));
 | |
|         T::regs().cr().modify(|w| w.set_crypen(true));
 | |
| 
 | |
|         let headerlen1: u32 = ((ctx.header_len * 8) >> 32) as u32;
 | |
|         let headerlen2: u32 = (ctx.header_len * 8) as u32;
 | |
|         let payloadlen1: u32 = ((ctx.payload_len * 8) >> 32) as u32;
 | |
|         let payloadlen2: u32 = (ctx.payload_len * 8) as u32;
 | |
| 
 | |
|         #[cfg(cryp_v2)]
 | |
|         let footer: [u32; 4] = [
 | |
|             headerlen1.swap_bytes(),
 | |
|             headerlen2.swap_bytes(),
 | |
|             payloadlen1.swap_bytes(),
 | |
|             payloadlen2.swap_bytes(),
 | |
|         ];
 | |
|         #[cfg(any(cryp_v3, cryp_v4))]
 | |
|         let footer: [u32; 4] = [headerlen1, headerlen2, payloadlen1, payloadlen2];
 | |
| 
 | |
|         let write = Self::write_words(&mut self.indma, C::BLOCK_SIZE, &footer);
 | |
| 
 | |
|         let mut full_tag: [u8; 16] = [0; 16];
 | |
|         let read = Self::read_bytes(&mut self.outdma, C::BLOCK_SIZE, &mut full_tag);
 | |
| 
 | |
|         embassy_futures::join::join(read, write).await;
 | |
| 
 | |
|         let mut tag: [u8; TAG_SIZE] = [0; TAG_SIZE];
 | |
|         tag.copy_from_slice(&full_tag[0..TAG_SIZE]);
 | |
| 
 | |
|         T::regs().cr().modify(|w| w.set_crypen(false));
 | |
| 
 | |
|         tag
 | |
|     }
 | |
| 
 | |
|     fn load_key(&self, key: &[u8]) {
 | |
|         // Load the key into the registers.
 | |
|         let mut keyidx = 0;
 | |
|         let mut keyword: [u8; 4] = [0; 4];
 | |
|         let keylen = key.len() * 8;
 | |
|         if keylen > 192 {
 | |
|             keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
 | |
|             keyidx += 4;
 | |
|             T::regs().key(0).klr().write_value(u32::from_be_bytes(keyword));
 | |
|             keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
 | |
|             keyidx += 4;
 | |
|             T::regs().key(0).krr().write_value(u32::from_be_bytes(keyword));
 | |
|         }
 | |
|         if keylen > 128 {
 | |
|             keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
 | |
|             keyidx += 4;
 | |
|             T::regs().key(1).klr().write_value(u32::from_be_bytes(keyword));
 | |
|             keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
 | |
|             keyidx += 4;
 | |
|             T::regs().key(1).krr().write_value(u32::from_be_bytes(keyword));
 | |
|         }
 | |
|         if keylen > 64 {
 | |
|             keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
 | |
|             keyidx += 4;
 | |
|             T::regs().key(2).klr().write_value(u32::from_be_bytes(keyword));
 | |
|             keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
 | |
|             keyidx += 4;
 | |
|             T::regs().key(2).krr().write_value(u32::from_be_bytes(keyword));
 | |
|         }
 | |
|         keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
 | |
|         keyidx += 4;
 | |
|         T::regs().key(3).klr().write_value(u32::from_be_bytes(keyword));
 | |
|         keyword = [0; 4];
 | |
|         keyword[0..key.len() - keyidx].copy_from_slice(&key[keyidx..key.len()]);
 | |
|         T::regs().key(3).krr().write_value(u32::from_be_bytes(keyword));
 | |
|     }
 | |
| 
 | |
|     fn store_context<'c, C: Cipher<'c> + CipherSized>(&self, ctx: &mut Context<'c, C>) {
 | |
|         // Wait for data block processing to finish.
 | |
|         while !T::regs().sr().read().ifem() {}
 | |
|         while T::regs().sr().read().ofne() {}
 | |
|         while T::regs().sr().read().busy() {}
 | |
| 
 | |
|         // Disable crypto processor.
 | |
|         T::regs().cr().modify(|w| w.set_crypen(false));
 | |
| 
 | |
|         // Save the peripheral state.
 | |
|         ctx.cr = T::regs().cr().read().0;
 | |
|         ctx.iv[0] = T::regs().init(0).ivlr().read();
 | |
|         ctx.iv[1] = T::regs().init(0).ivrr().read();
 | |
|         ctx.iv[2] = T::regs().init(1).ivlr().read();
 | |
|         ctx.iv[3] = T::regs().init(1).ivrr().read();
 | |
| 
 | |
|         #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
|         for i in 0..8 {
 | |
|             ctx.csgcmccm[i] = T::regs().csgcmccmr(i).read();
 | |
|             ctx.csgcm[i] = T::regs().csgcmr(i).read();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fn load_context<'c, C: Cipher<'c> + CipherSized>(&self, ctx: &Context<'c, C>) {
 | |
|         // Reload state registers.
 | |
|         T::regs().cr().write(|w| w.0 = ctx.cr);
 | |
|         T::regs().init(0).ivlr().write_value(ctx.iv[0]);
 | |
|         T::regs().init(0).ivrr().write_value(ctx.iv[1]);
 | |
|         T::regs().init(1).ivlr().write_value(ctx.iv[2]);
 | |
|         T::regs().init(1).ivrr().write_value(ctx.iv[3]);
 | |
| 
 | |
|         #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
|         for i in 0..8 {
 | |
|             T::regs().csgcmccmr(i).write_value(ctx.csgcmccm[i]);
 | |
|             T::regs().csgcmr(i).write_value(ctx.csgcm[i]);
 | |
|         }
 | |
|         self.load_key(ctx.cipher.key());
 | |
| 
 | |
|         // Prepare key if applicable.
 | |
|         ctx.cipher.prepare_key(T::regs());
 | |
|         T::regs().cr().write(|w| w.0 = ctx.cr);
 | |
| 
 | |
|         // Enable crypto processor.
 | |
|         T::regs().cr().modify(|w| w.set_crypen(true));
 | |
|     }
 | |
| 
 | |
|     fn write_bytes_blocking(&self, block_size: usize, blocks: &[u8]) {
 | |
|         // Ensure input is a multiple of block size.
 | |
|         assert_eq!(blocks.len() % block_size, 0);
 | |
|         let mut index = 0;
 | |
|         let end_index = blocks.len();
 | |
|         while index < end_index {
 | |
|             let mut in_word: [u8; 4] = [0; 4];
 | |
|             in_word.copy_from_slice(&blocks[index..index + 4]);
 | |
|             T::regs().din().write_value(u32::from_ne_bytes(in_word));
 | |
|             index += 4;
 | |
|             if index % block_size == 0 {
 | |
|                 // Block until input FIFO is empty.
 | |
|                 while !T::regs().sr().read().ifem() {}
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     async fn write_bytes(dma: &mut PeripheralRef<'_, DmaIn>, block_size: usize, blocks: &[u8])
 | |
|     where
 | |
|         DmaIn: crate::cryp::DmaIn<T>,
 | |
|     {
 | |
|         if blocks.len() == 0 {
 | |
|             return;
 | |
|         }
 | |
|         // Ensure input is a multiple of block size.
 | |
|         assert_eq!(blocks.len() % block_size, 0);
 | |
|         // Configure DMA to transfer input to crypto core.
 | |
|         let dma_request = dma.request();
 | |
|         let dst_ptr: *mut u32 = T::regs().din().as_ptr();
 | |
|         let num_words = blocks.len() / 4;
 | |
|         let src_ptr: *const [u8] = ptr::slice_from_raw_parts(blocks.as_ptr().cast(), num_words);
 | |
|         let options = TransferOptions {
 | |
|             #[cfg(not(gpdma))]
 | |
|             priority: crate::dma::Priority::High,
 | |
|             ..Default::default()
 | |
|         };
 | |
|         let dma_transfer = unsafe { Transfer::new_write_raw(dma, dma_request, src_ptr, dst_ptr, options) };
 | |
|         T::regs().dmacr().modify(|w| w.set_dien(true));
 | |
|         // Wait for the transfer to complete.
 | |
|         dma_transfer.await;
 | |
|     }
 | |
| 
 | |
|     #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
|     fn write_words_blocking(&self, block_size: usize, blocks: &[u32]) {
 | |
|         assert_eq!((blocks.len() * 4) % block_size, 0);
 | |
|         let mut byte_counter: usize = 0;
 | |
|         for word in blocks {
 | |
|             T::regs().din().write_value(*word);
 | |
|             byte_counter += 4;
 | |
|             if byte_counter % block_size == 0 {
 | |
|                 // Block until input FIFO is empty.
 | |
|                 while !T::regs().sr().read().ifem() {}
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     #[cfg(any(cryp_v2, cryp_v3, cryp_v4))]
 | |
|     async fn write_words(dma: &mut PeripheralRef<'_, DmaIn>, block_size: usize, blocks: &[u32])
 | |
|     where
 | |
|         DmaIn: crate::cryp::DmaIn<T>,
 | |
|     {
 | |
|         if blocks.len() == 0 {
 | |
|             return;
 | |
|         }
 | |
|         // Ensure input is a multiple of block size.
 | |
|         assert_eq!((blocks.len() * 4) % block_size, 0);
 | |
|         // Configure DMA to transfer input to crypto core.
 | |
|         let dma_request = dma.request();
 | |
|         let dst_ptr: *mut u32 = T::regs().din().as_ptr();
 | |
|         let num_words = blocks.len();
 | |
|         let src_ptr: *const [u32] = ptr::slice_from_raw_parts(blocks.as_ptr().cast(), num_words);
 | |
|         let options = TransferOptions {
 | |
|             #[cfg(not(gpdma))]
 | |
|             priority: crate::dma::Priority::High,
 | |
|             ..Default::default()
 | |
|         };
 | |
|         let dma_transfer = unsafe { Transfer::new_write_raw(dma, dma_request, src_ptr, dst_ptr, options) };
 | |
|         T::regs().dmacr().modify(|w| w.set_dien(true));
 | |
|         // Wait for the transfer to complete.
 | |
|         dma_transfer.await;
 | |
|     }
 | |
| 
 | |
|     fn read_bytes_blocking(&self, block_size: usize, blocks: &mut [u8]) {
 | |
|         // Block until there is output to read.
 | |
|         while !T::regs().sr().read().ofne() {}
 | |
|         // Ensure input is a multiple of block size.
 | |
|         assert_eq!(blocks.len() % block_size, 0);
 | |
|         // Read block out
 | |
|         let mut index = 0;
 | |
|         let end_index = blocks.len();
 | |
|         while index < end_index {
 | |
|             let out_word: u32 = T::regs().dout().read();
 | |
|             blocks[index..index + 4].copy_from_slice(u32::to_ne_bytes(out_word).as_slice());
 | |
|             index += 4;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     async fn read_bytes(dma: &mut PeripheralRef<'_, DmaOut>, block_size: usize, blocks: &mut [u8])
 | |
|     where
 | |
|         DmaOut: crate::cryp::DmaOut<T>,
 | |
|     {
 | |
|         if blocks.len() == 0 {
 | |
|             return;
 | |
|         }
 | |
|         // Ensure input is a multiple of block size.
 | |
|         assert_eq!(blocks.len() % block_size, 0);
 | |
|         // Configure DMA to get output from crypto core.
 | |
|         let dma_request = dma.request();
 | |
|         let src_ptr = T::regs().dout().as_ptr();
 | |
|         let num_words = blocks.len() / 4;
 | |
|         let dst_ptr = ptr::slice_from_raw_parts_mut(blocks.as_mut_ptr().cast(), num_words);
 | |
|         let options = TransferOptions {
 | |
|             #[cfg(not(gpdma))]
 | |
|             priority: crate::dma::Priority::VeryHigh,
 | |
|             ..Default::default()
 | |
|         };
 | |
|         let dma_transfer = unsafe { Transfer::new_read_raw(dma, dma_request, src_ptr, dst_ptr, options) };
 | |
|         T::regs().dmacr().modify(|w| w.set_doen(true));
 | |
|         // Wait for the transfer to complete.
 | |
|         dma_transfer.await;
 | |
|     }
 | |
| }
 | |
| 
 | |
| trait SealedInstance {
 | |
|     fn regs() -> pac::cryp::Cryp;
 | |
| }
 | |
| 
 | |
| /// CRYP instance trait.
 | |
| #[allow(private_bounds)]
 | |
| pub trait Instance: SealedInstance + Peripheral<P = Self> + crate::rcc::RccPeripheral + 'static + Send {
 | |
|     /// Interrupt for this CRYP instance.
 | |
|     type Interrupt: interrupt::typelevel::Interrupt;
 | |
| }
 | |
| 
 | |
| foreach_interrupt!(
 | |
|     ($inst:ident, cryp, CRYP, GLOBAL, $irq:ident) => {
 | |
|         impl Instance for peripherals::$inst {
 | |
|             type Interrupt = crate::interrupt::typelevel::$irq;
 | |
|         }
 | |
| 
 | |
|         impl SealedInstance for peripherals::$inst {
 | |
|             fn regs() -> crate::pac::cryp::Cryp {
 | |
|                 crate::pac::$inst
 | |
|             }
 | |
|         }
 | |
|     };
 | |
| );
 | |
| 
 | |
| dma_trait!(DmaIn, Instance);
 | |
| dma_trait!(DmaOut, Instance);
 |