385 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			385 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| #![macro_use]
 | |
| 
 | |
| use core::cell::Cell;
 | |
| use core::convert::TryInto;
 | |
| use core::sync::atomic::{compiler_fence, Ordering};
 | |
| 
 | |
| use atomic_polyfill::AtomicU32;
 | |
| use embassy::interrupt::InterruptExt;
 | |
| use embassy::time::{Clock as EmbassyClock, TICKS_PER_SECOND};
 | |
| 
 | |
| use crate::interrupt::{CriticalSection, Interrupt, Mutex};
 | |
| use crate::pac::timer::TimGp16;
 | |
| use crate::peripherals;
 | |
| use crate::time::Hertz;
 | |
| 
 | |
| // Clock timekeeping works with something we call "periods", which are time intervals
 | |
| // of 2^15 ticks. The Clock counter value is 16 bits, so one "overflow cycle" is 2 periods.
 | |
| //
 | |
| // A `period` count is maintained in parallel to the Timer hardware `counter`, like this:
 | |
| // - `period` and `counter` start at 0
 | |
| // - `period` is incremented on overflow (at counter value 0)
 | |
| // - `period` is incremented "midway" between overflows (at counter value 0x8000)
 | |
| //
 | |
| // Therefore, when `period` is even, counter is in 0..0x7FFF. When odd, counter is in 0x8000..0xFFFF
 | |
| // This allows for now() to return the correct value even if it races an overflow.
 | |
| //
 | |
| // To get `now()`, `period` is read first, then `counter` is read. If the counter value matches
 | |
| // the expected range for the `period` parity, we're done. If it doesn't, this means that
 | |
| // a new period start has raced us between reading `period` and `counter`, so we assume the `counter` value
 | |
| // corresponds to the next period.
 | |
| //
 | |
| // `period` is a 32bit integer, so It overflows on 2^32 * 2^15 / 32768 seconds of uptime, which is 136 years.
 | |
| fn calc_now(period: u32, counter: u16) -> u64 {
 | |
|     ((period as u64) << 15) + ((counter as u32 ^ ((period & 1) << 15)) as u64)
 | |
| }
 | |
| 
 | |
| struct AlarmState {
 | |
|     timestamp: Cell<u64>,
 | |
|     #[allow(clippy::type_complexity)]
 | |
|     callback: Cell<Option<(fn(*mut ()), *mut ())>>,
 | |
| }
 | |
| 
 | |
| impl AlarmState {
 | |
|     fn new() -> Self {
 | |
|         Self {
 | |
|             timestamp: Cell::new(u64::MAX),
 | |
|             callback: Cell::new(None),
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| const ALARM_COUNT: usize = 3;
 | |
| 
 | |
| /// Clock timer that can be used by the executor and to set alarms.
 | |
| ///
 | |
| /// It can work with Timers 2, 3, 4, 5. This timer works internally with a unit of 2^15 ticks, which
 | |
| /// means that if a call to [`embassy::time::Clock::now`] is blocked for that amount of ticks the
 | |
| /// returned value will be wrong (an old value). The current default tick rate is 32768 ticks per
 | |
| /// second.
 | |
| pub struct Clock<T: Instance> {
 | |
|     _inner: T,
 | |
|     irq: T::Interrupt,
 | |
|     /// Number of 2^23 periods elapsed since boot.
 | |
|     period: AtomicU32,
 | |
|     /// Timestamp at which to fire alarm. u64::MAX if no alarm is scheduled.
 | |
|     alarms: Mutex<[AlarmState; ALARM_COUNT]>,
 | |
| }
 | |
| 
 | |
| impl<T: Instance> Clock<T> {
 | |
|     pub fn new(peripheral: T, irq: T::Interrupt) -> Self {
 | |
|         Self {
 | |
|             _inner: peripheral,
 | |
|             irq,
 | |
|             period: AtomicU32::new(0),
 | |
|             alarms: Mutex::new([AlarmState::new(), AlarmState::new(), AlarmState::new()]),
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // TODO: Temporary until clock code generation is in place
 | |
|     pub fn start_tim2(&'static self) {
 | |
|         cfg_if::cfg_if! {
 | |
|             if #[cfg(stm32l0)] {
 | |
|                 unsafe {
 | |
|                     let rcc = crate::pac::RCC;
 | |
|                     rcc.apb1enr()
 | |
|                         .modify(|w| w.set_tim2en(crate::pac::rcc::vals::Lptimen::ENABLED));
 | |
|                     rcc.apb1rstr().modify(|w| w.set_tim2rst(true));
 | |
|                     rcc.apb1rstr().modify(|w| w.set_tim2rst(false));
 | |
|                 }
 | |
| 
 | |
|                 let timer_freq = unsafe { crate::rcc::get_freqs().apb1_clk };
 | |
|                 self.start(timer_freq);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     pub fn start(&'static self, timer_freq: Hertz) {
 | |
|         let inner = T::inner();
 | |
| 
 | |
|         // NOTE(unsafe) Critical section to use the unsafe methods
 | |
|         critical_section::with(|_| {
 | |
|             unsafe {
 | |
|                 inner.prepare(timer_freq);
 | |
|             }
 | |
| 
 | |
|             self.irq.set_handler_context(self as *const _ as *mut _);
 | |
|             self.irq.set_handler(|ptr| unsafe {
 | |
|                 let this = &*(ptr as *const () as *const Self);
 | |
|                 this.on_interrupt();
 | |
|             });
 | |
|             self.irq.unpend();
 | |
|             self.irq.enable();
 | |
| 
 | |
|             unsafe {
 | |
|                 inner.start_counter();
 | |
|             }
 | |
|         })
 | |
|     }
 | |
| 
 | |
|     fn on_interrupt(&self) {
 | |
|         let inner = T::inner();
 | |
| 
 | |
|         // NOTE(unsafe) Use critical section to access the methods
 | |
|         // XXX: reduce the size of this critical section ?
 | |
|         critical_section::with(|cs| unsafe {
 | |
|             if inner.overflow_interrupt_status() {
 | |
|                 inner.overflow_clear_flag();
 | |
|                 self.next_period();
 | |
|             }
 | |
| 
 | |
|             // Half overflow
 | |
|             if inner.compare_interrupt_status(0) {
 | |
|                 inner.compare_clear_flag(0);
 | |
|                 self.next_period();
 | |
|             }
 | |
| 
 | |
|             for n in 1..=ALARM_COUNT {
 | |
|                 if inner.compare_interrupt_status(n) {
 | |
|                     inner.compare_clear_flag(n);
 | |
|                     self.trigger_alarm(n, cs);
 | |
|                 }
 | |
|             }
 | |
|         })
 | |
|     }
 | |
| 
 | |
|     fn next_period(&self) {
 | |
|         let inner = T::inner();
 | |
| 
 | |
|         let period = self.period.fetch_add(1, Ordering::Relaxed) + 1;
 | |
|         let t = (period as u64) << 15;
 | |
| 
 | |
|         critical_section::with(move |cs| {
 | |
|             for n in 1..=ALARM_COUNT {
 | |
|                 let alarm = &self.alarms.borrow(cs)[n - 1];
 | |
|                 let at = alarm.timestamp.get();
 | |
| 
 | |
|                 let diff = at - t;
 | |
|                 if diff < 0xc000 {
 | |
|                     inner.set_compare(n, at as u16);
 | |
|                     // NOTE(unsafe) We're in a critical section
 | |
|                     unsafe {
 | |
|                         inner.set_compare_interrupt(n, true);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         })
 | |
|     }
 | |
| 
 | |
|     fn trigger_alarm(&self, n: usize, cs: CriticalSection) {
 | |
|         let inner = T::inner();
 | |
|         // NOTE(unsafe) We have a critical section
 | |
|         unsafe {
 | |
|             inner.set_compare_interrupt(n, false);
 | |
|         }
 | |
| 
 | |
|         let alarm = &self.alarms.borrow(cs)[n - 1];
 | |
|         alarm.timestamp.set(u64::MAX);
 | |
| 
 | |
|         // Call after clearing alarm, so the callback can set another alarm.
 | |
|         if let Some((f, ctx)) = alarm.callback.get() {
 | |
|             f(ctx);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fn set_alarm_callback(&self, n: usize, callback: fn(*mut ()), ctx: *mut ()) {
 | |
|         critical_section::with(|cs| {
 | |
|             let alarm = &self.alarms.borrow(cs)[n - 1];
 | |
|             alarm.callback.set(Some((callback, ctx)));
 | |
|         })
 | |
|     }
 | |
| 
 | |
|     fn set_alarm(&self, n: usize, timestamp: u64) {
 | |
|         critical_section::with(|cs| {
 | |
|             let inner = T::inner();
 | |
| 
 | |
|             let alarm = &self.alarms.borrow(cs)[n - 1];
 | |
|             alarm.timestamp.set(timestamp);
 | |
| 
 | |
|             let t = self.now();
 | |
|             if timestamp <= t {
 | |
|                 self.trigger_alarm(n, cs);
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             let diff = timestamp - t;
 | |
|             if diff < 0xc000 {
 | |
|                 let safe_timestamp = timestamp.max(t + 3);
 | |
|                 inner.set_compare(n, safe_timestamp as u16);
 | |
| 
 | |
|                 // NOTE(unsafe) We're in a critical section
 | |
|                 unsafe {
 | |
|                     inner.set_compare_interrupt(n, true);
 | |
|                 }
 | |
|             } else {
 | |
|                 unsafe {
 | |
|                     inner.set_compare_interrupt(n, false);
 | |
|                 }
 | |
|             }
 | |
|         })
 | |
|     }
 | |
| 
 | |
|     pub fn alarm1(&'static self) -> Alarm<T> {
 | |
|         Alarm { n: 1, rtc: self }
 | |
|     }
 | |
|     pub fn alarm2(&'static self) -> Alarm<T> {
 | |
|         Alarm { n: 2, rtc: self }
 | |
|     }
 | |
|     pub fn alarm3(&'static self) -> Alarm<T> {
 | |
|         Alarm { n: 3, rtc: self }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<T: Instance> EmbassyClock for Clock<T> {
 | |
|     fn now(&self) -> u64 {
 | |
|         let inner = T::inner();
 | |
| 
 | |
|         let period = self.period.load(Ordering::Relaxed);
 | |
|         compiler_fence(Ordering::Acquire);
 | |
|         let counter = inner.counter();
 | |
|         calc_now(period, counter)
 | |
|     }
 | |
| }
 | |
| 
 | |
| pub struct Alarm<T: Instance> {
 | |
|     n: usize,
 | |
|     rtc: &'static Clock<T>,
 | |
| }
 | |
| 
 | |
| impl<T: Instance> embassy::time::Alarm for Alarm<T> {
 | |
|     fn set_callback(&self, callback: fn(*mut ()), ctx: *mut ()) {
 | |
|         self.rtc.set_alarm_callback(self.n, callback, ctx);
 | |
|     }
 | |
| 
 | |
|     fn set(&self, timestamp: u64) {
 | |
|         self.rtc.set_alarm(self.n, timestamp);
 | |
|     }
 | |
| 
 | |
|     fn clear(&self) {
 | |
|         self.rtc.set_alarm(self.n, u64::MAX);
 | |
|     }
 | |
| }
 | |
| 
 | |
| pub struct TimerInner(pub(crate) TimGp16);
 | |
| 
 | |
| impl TimerInner {
 | |
|     unsafe fn prepare(&self, timer_freq: Hertz) {
 | |
|         self.stop_and_reset();
 | |
| 
 | |
|         let psc = timer_freq.0 / TICKS_PER_SECOND as u32 - 1;
 | |
|         let psc: u16 = psc.try_into().unwrap();
 | |
| 
 | |
|         self.set_psc_arr(psc, u16::MAX);
 | |
|         // Mid-way point
 | |
|         self.set_compare(0, 0x8000);
 | |
|         self.set_compare_interrupt(0, true);
 | |
|     }
 | |
| 
 | |
|     unsafe fn start_counter(&self) {
 | |
|         self.0.cr1().modify(|w| w.set_cen(true));
 | |
|     }
 | |
| 
 | |
|     unsafe fn stop_and_reset(&self) {
 | |
|         let regs = self.0;
 | |
| 
 | |
|         regs.cr1().modify(|w| w.set_cen(false));
 | |
|         regs.cnt().write(|w| w.set_cnt(0));
 | |
|     }
 | |
| 
 | |
|     fn overflow_interrupt_status(&self) -> bool {
 | |
|         // NOTE(unsafe) Atomic read with no side-effects
 | |
|         unsafe { self.0.sr().read().uif() }
 | |
|     }
 | |
| 
 | |
|     unsafe fn overflow_clear_flag(&self) {
 | |
|         self.0.sr().modify(|w| w.set_uif(false));
 | |
|     }
 | |
| 
 | |
|     unsafe fn set_psc_arr(&self, psc: u16, arr: u16) {
 | |
|         use crate::pac::timer::vals::Urs;
 | |
| 
 | |
|         let regs = self.0;
 | |
| 
 | |
|         regs.psc().write(|w| w.set_psc(psc));
 | |
|         regs.arr().write(|w| w.set_arr(arr));
 | |
| 
 | |
|         // Set URS, generate update and clear URS
 | |
|         regs.cr1().modify(|w| w.set_urs(Urs::COUNTERONLY));
 | |
|         regs.egr().write(|w| w.set_ug(true));
 | |
|         regs.cr1().modify(|w| w.set_urs(Urs::ANYEVENT));
 | |
|     }
 | |
| 
 | |
|     fn compare_interrupt_status(&self, n: usize) -> bool {
 | |
|         if n > 3 {
 | |
|             false
 | |
|         } else {
 | |
|             // NOTE(unsafe) Atomic read with no side-effects
 | |
|             unsafe { self.0.sr().read().ccif(n) }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     unsafe fn compare_clear_flag(&self, n: usize) {
 | |
|         if n > 3 {
 | |
|             return;
 | |
|         }
 | |
|         self.0.sr().modify(|w| w.set_ccif(n, false));
 | |
|     }
 | |
| 
 | |
|     fn set_compare(&self, n: usize, value: u16) {
 | |
|         if n > 3 {
 | |
|             return;
 | |
|         }
 | |
|         // NOTE(unsafe) Atomic write
 | |
|         unsafe {
 | |
|             self.0.ccr(n).write(|w| w.set_ccr(value));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     unsafe fn set_compare_interrupt(&self, n: usize, enable: bool) {
 | |
|         if n > 3 {
 | |
|             return;
 | |
|         }
 | |
|         self.0.dier().modify(|w| w.set_ccie(n, enable));
 | |
|     }
 | |
| 
 | |
|     fn counter(&self) -> u16 {
 | |
|         // NOTE(unsafe) Atomic read with no side-effects
 | |
|         unsafe { self.0.cnt().read().cnt() }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // ------------------------------------------------------
 | |
| 
 | |
| pub(crate) mod sealed {
 | |
|     use super::*;
 | |
|     pub trait Instance {
 | |
|         type Interrupt: Interrupt;
 | |
| 
 | |
|         fn inner() -> TimerInner;
 | |
|     }
 | |
| }
 | |
| 
 | |
| pub trait Instance: sealed::Instance + Sized + 'static {}
 | |
| 
 | |
| macro_rules! impl_timer {
 | |
|     ($inst:ident) => {
 | |
|         impl sealed::Instance for peripherals::$inst {
 | |
|             type Interrupt = crate::interrupt::$inst;
 | |
| 
 | |
|             fn inner() -> crate::clock::TimerInner {
 | |
|                 const INNER: TimerInner = TimerInner(crate::pac::$inst);
 | |
|                 INNER
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         impl Instance for peripherals::$inst {}
 | |
|     };
 | |
| }
 | |
| 
 | |
| crate::pac::peripherals!(
 | |
|     (timer, TIM2) => { impl_timer!(TIM2); };
 | |
|     (timer, TIM3) => { impl_timer!(TIM3); };
 | |
|     (timer, TIM4) => { impl_timer!(TIM4); };
 | |
|     (timer, TIM5) => { impl_timer!(TIM5); };
 | |
| );
 |