2025-05-21 21:30:23 +03:00

237 lines
8.9 KiB
Rust

use embassy_hal_internal::drop::OnDrop;
use super::{family, Blocking, Error, Flash, EEPROM_BASE, EEPROM_SIZE};
#[cfg(eeprom)]
impl<'d> Flash<'d, Blocking> {
// --- Internal helpers ---
/// Checks if the given offset and size are within the EEPROM bounds.
fn check_eeprom_offset(&self, offset: u32, size: u32) -> Result<(), Error> {
if offset
.checked_add(size)
.filter(|&end| end <= EEPROM_SIZE as u32)
.is_some()
{
Ok(())
} else {
Err(Error::Size)
}
}
// --- Unlocked (unsafe, internal) functions ---
/// Writes a slice of bytes to EEPROM at the given offset without locking.
///
/// # Safety
/// Caller must ensure EEPROM is unlocked and offset is valid.
unsafe fn eeprom_write_u8_slice_unlocked(&self, offset: u32, data: &[u8]) -> Result<(), Error> {
for (i, &byte) in data.iter().enumerate() {
let addr = EEPROM_BASE as u32 + offset + i as u32;
core::ptr::write_volatile(addr as *mut u8, byte);
family::wait_ready_blocking()?;
family::clear_all_err();
}
Ok(())
}
/// Writes a slice of u16 values to EEPROM at the given offset without locking.
///
/// # Safety
/// Caller must ensure EEPROM is unlocked and offset is valid and aligned.
unsafe fn eeprom_write_u16_slice_unlocked(&self, offset: u32, data: &[u16]) -> Result<(), Error> {
for (i, &value) in data.iter().enumerate() {
let addr = EEPROM_BASE as u32 + offset + i as u32 * 2;
core::ptr::write_volatile(addr as *mut u16, value);
family::wait_ready_blocking()?;
family::clear_all_err();
}
Ok(())
}
/// Writes a slice of u32 values to EEPROM at the given offset without locking.
///
/// # Safety
/// Caller must ensure EEPROM is unlocked and offset is valid and aligned.
unsafe fn eeprom_write_u32_slice_unlocked(&self, offset: u32, data: &[u32]) -> Result<(), Error> {
for (i, &value) in data.iter().enumerate() {
let addr = EEPROM_BASE as u32 + offset + i as u32 * 4;
core::ptr::write_volatile(addr as *mut u32, value);
family::wait_ready_blocking()?;
family::clear_all_err();
}
Ok(())
}
// --- Public, safe API ---
/// Writes a single byte to EEPROM at the given offset.
pub fn eeprom_write_u8(&mut self, offset: u32, value: u8) -> Result<(), Error> {
self.check_eeprom_offset(offset, 1)?;
unsafe {
family::unlock();
let _on_drop = OnDrop::new(|| family::lock());
self.eeprom_write_u8_slice_unlocked(offset, core::slice::from_ref(&value))?;
}
Ok(())
}
/// Writes a single 16-bit value to EEPROM at the given offset.
///
/// Returns an error if the offset is not 2-byte aligned.
pub fn eeprom_write_u16(&mut self, offset: u32, value: u16) -> Result<(), Error> {
if offset % 2 != 0 {
return Err(Error::Unaligned);
}
self.check_eeprom_offset(offset, 2)?;
unsafe {
family::unlock();
let _on_drop = OnDrop::new(|| family::lock());
self.eeprom_write_u16_slice_unlocked(offset, core::slice::from_ref(&value))?;
}
Ok(())
}
/// Writes a single 32-bit value to EEPROM at the given offset.
///
/// Returns an error if the offset is not 4-byte aligned.
pub fn eeprom_write_u32(&mut self, offset: u32, value: u32) -> Result<(), Error> {
if offset % 4 != 0 {
return Err(Error::Unaligned);
}
self.check_eeprom_offset(offset, 4)?;
unsafe {
family::unlock();
let _on_drop = OnDrop::new(|| family::lock());
self.eeprom_write_u32_slice_unlocked(offset, core::slice::from_ref(&value))?;
}
Ok(())
}
/// Writes a slice of bytes to EEPROM at the given offset.
pub fn eeprom_write_u8_slice(&mut self, offset: u32, data: &[u8]) -> Result<(), Error> {
self.check_eeprom_offset(offset, data.len() as u32)?;
unsafe {
family::unlock();
let _on_drop = OnDrop::new(|| family::lock());
self.eeprom_write_u8_slice_unlocked(offset, data)?;
}
Ok(())
}
/// Writes a slice of 16-bit values to EEPROM at the given offset.
///
/// Returns an error if the offset is not 2-byte aligned.
pub fn eeprom_write_u16_slice(&mut self, offset: u32, data: &[u16]) -> Result<(), Error> {
if offset % 2 != 0 {
return Err(Error::Unaligned);
}
self.check_eeprom_offset(offset, data.len() as u32 * 2)?;
unsafe {
family::unlock();
let _on_drop = OnDrop::new(|| family::lock());
self.eeprom_write_u16_slice_unlocked(offset, data)?;
}
Ok(())
}
/// Writes a slice of 32-bit values to EEPROM at the given offset.
///
/// Returns an error if the offset is not 4-byte aligned.
pub fn eeprom_write_u32_slice(&mut self, offset: u32, data: &[u32]) -> Result<(), Error> {
if offset % 4 != 0 {
return Err(Error::Unaligned);
}
self.check_eeprom_offset(offset, data.len() as u32 * 4)?;
unsafe {
family::unlock();
let _on_drop = OnDrop::new(|| family::lock());
self.eeprom_write_u32_slice_unlocked(offset, data)?;
}
Ok(())
}
/// Writes a byte slice to EEPROM at the given offset, handling alignment.
///
/// This method will write unaligned prefix and suffix as bytes, and aligned middle as u32.
pub fn eeprom_write_slice(&mut self, offset: u32, data: &[u8]) -> Result<(), Error> {
self.check_eeprom_offset(offset, data.len() as u32)?;
let start = offset;
let misalign = (start % 4) as usize;
let prefix_len = if misalign == 0 {
0
} else {
(4 - misalign).min(data.len())
};
let (prefix, rest) = data.split_at(prefix_len);
let aligned_len = (rest.len() / 4) * 4;
let (bytes_for_u32_write, suffix) = rest.split_at(aligned_len);
unsafe {
family::unlock();
let _on_drop = OnDrop::new(|| family::lock());
if !prefix.is_empty() {
self.eeprom_write_u8_slice_unlocked(start, prefix)?;
}
if !bytes_for_u32_write.is_empty() {
let aligned_eeprom_offset = start + prefix_len as u32;
let base_eeprom_addr = EEPROM_BASE as u32 + aligned_eeprom_offset;
for (i, chunk) in bytes_for_u32_write.chunks_exact(4).enumerate() {
// Safely read a u32 from a potentially unaligned pointer into the chunk.
let value = (chunk.as_ptr() as *const u32).read_unaligned();
let current_eeprom_addr = base_eeprom_addr + (i * 4) as u32;
core::ptr::write_volatile(current_eeprom_addr as *mut u32, value);
family::wait_ready_blocking()?;
family::clear_all_err();
}
}
if !suffix.is_empty() {
let suffix_offset = start + (prefix_len + aligned_len) as u32;
self.eeprom_write_u8_slice_unlocked(suffix_offset, suffix)?;
}
}
Ok(())
}
/// Reads a single byte from EEPROM at the given offset.
pub fn eeprom_read_u8(&self, offset: u32) -> Result<u8, Error> {
self.check_eeprom_offset(offset, 1)?;
let addr = EEPROM_BASE as u32 + offset;
Ok(unsafe { core::ptr::read_volatile(addr as *const u8) })
}
/// Reads a single 16-bit value from EEPROM at the given offset.
///
/// Returns an error if the offset is not 2-byte aligned.
pub fn eeprom_read_u16(&self, offset: u32) -> Result<u16, Error> {
if offset % 2 != 0 {
return Err(Error::Unaligned);
}
self.check_eeprom_offset(offset, 2)?;
let addr = EEPROM_BASE as u32 + offset;
Ok(unsafe { core::ptr::read_volatile(addr as *const u16) })
}
/// Reads a single 32-bit value from EEPROM at the given offset.
///
/// Returns an error if the offset is not 4-byte aligned.
pub fn eeprom_read_u32(&self, offset: u32) -> Result<u32, Error> {
if offset % 4 != 0 {
return Err(Error::Unaligned);
}
self.check_eeprom_offset(offset, 4)?;
let addr = EEPROM_BASE as u32 + offset;
Ok(unsafe { core::ptr::read_volatile(addr as *const u32) })
}
/// Reads a slice of bytes from EEPROM at the given offset into the provided buffer.
pub fn eeprom_read_slice(&self, offset: u32, buf: &mut [u8]) -> Result<(), Error> {
self.check_eeprom_offset(offset, buf.len() as u32)?;
let addr = EEPROM_BASE as u32 + offset;
let src = unsafe { core::slice::from_raw_parts(addr as *const u8, buf.len()) };
buf.copy_from_slice(src);
Ok(())
}
}