2024-03-07 06:51:32 -08:00

185 lines
4.9 KiB
Rust

use crate::pac::flash::vals::Latency;
pub use crate::pac::rcc::vals::{
Hpre as AHBPrescaler, Hsidiv as HsiSysDiv, Hsikerdiv as HsiKerDiv, Ppre as APBPrescaler, Sw as Sysclk,
};
use crate::pac::{FLASH, RCC};
use crate::time::Hertz;
/// HSI speed
pub const HSI_FREQ: Hertz = Hertz(48_000_000);
/// HSE Mode
#[derive(Clone, Copy, Eq, PartialEq)]
pub enum HseMode {
/// crystal/ceramic oscillator (HSEBYP=0)
Oscillator,
/// external analog clock (low swing) (HSEBYP=1)
Bypass,
}
/// HSE Configuration
#[derive(Clone, Copy, Eq, PartialEq)]
pub struct Hse {
/// HSE frequency.
pub freq: Hertz,
/// HSE mode.
pub mode: HseMode,
}
/// HSI Configuration
#[derive(Clone, Copy, Eq, PartialEq)]
pub struct Hsi {
/// Division factor for HSISYS clock. Default is 4.
pub sys_div: HsiSysDiv,
/// Division factor for HSIKER clock. Default is 3.
pub ker_div: HsiKerDiv,
}
/// Clocks configutation
#[non_exhaustive]
pub struct Config {
/// HSI Configuration
pub hsi: Option<Hsi>,
/// HSE Configuration
pub hse: Option<Hse>,
/// System Clock Configuration
pub sys: Sysclk,
pub ahb_pre: AHBPrescaler,
pub apb1_pre: APBPrescaler,
/// Low-Speed Clock Configuration
pub ls: super::LsConfig,
/// Per-peripheral kernel clock selection muxes
pub mux: super::mux::ClockMux,
}
impl Default for Config {
#[inline]
fn default() -> Config {
Config {
hsi: Some(Hsi {
sys_div: HsiSysDiv::DIV4,
ker_div: HsiKerDiv::DIV3,
}),
hse: None,
sys: Sysclk::HSISYS,
ahb_pre: AHBPrescaler::DIV1,
apb1_pre: APBPrescaler::DIV1,
ls: Default::default(),
mux: Default::default(),
}
}
}
pub(crate) unsafe fn init(config: Config) {
// Configure HSI
let (hsi, hsisys, hsiker) = match config.hsi {
None => {
RCC.cr().modify(|w| w.set_hsion(false));
(None, None, None)
}
Some(hsi) => {
RCC.cr().modify(|w| {
w.set_hsidiv(hsi.sys_div);
w.set_hsikerdiv(hsi.ker_div);
w.set_hsion(true);
});
while !RCC.cr().read().hsirdy() {}
(
Some(HSI_FREQ),
Some(HSI_FREQ / hsi.sys_div),
Some(HSI_FREQ / hsi.ker_div),
)
}
};
// Configure HSE
let hse = match config.hse {
None => {
RCC.cr().modify(|w| w.set_hseon(false));
None
}
Some(hse) => {
match hse.mode {
HseMode::Bypass => assert!(max::HSE_BYP.contains(&hse.freq)),
HseMode::Oscillator => assert!(max::HSE_OSC.contains(&hse.freq)),
}
RCC.cr().modify(|w| w.set_hsebyp(hse.mode != HseMode::Oscillator));
RCC.cr().modify(|w| w.set_hseon(true));
while !RCC.cr().read().hserdy() {}
Some(hse.freq)
}
};
let sys = match config.sys {
Sysclk::HSISYS => unwrap!(hsisys),
Sysclk::HSE => unwrap!(hse),
_ => unreachable!(),
};
assert!(max::SYSCLK.contains(&sys));
// Calculate the AHB frequency (HCLK), among other things so we can calculate the correct flash read latency.
let hclk = sys / config.ahb_pre;
assert!(max::HCLK.contains(&hclk));
let (pclk1, pclk1_tim) = super::util::calc_pclk(hclk, config.apb1_pre);
assert!(max::PCLK.contains(&pclk1));
let latency = match hclk.0 {
..=24_000_000 => Latency::WS0,
_ => Latency::WS1,
};
// Configure flash read access latency based on voltage scale and frequency
FLASH.acr().modify(|w| {
w.set_latency(latency);
});
// Spin until the effective flash latency is set.
while FLASH.acr().read().latency() != latency {}
// Now that boost mode and flash read access latency are configured, set up SYSCLK
RCC.cfgr().modify(|w| {
w.set_sw(config.sys);
w.set_hpre(config.ahb_pre);
w.set_ppre(config.apb1_pre);
});
let rtc = config.ls.init();
config.mux.init();
set_clocks!(
sys: Some(sys),
hclk1: Some(hclk),
pclk1: Some(pclk1),
pclk1_tim: Some(pclk1_tim),
hsi: hsi,
hsiker: hsiker,
hse: hse,
rtc: rtc,
// TODO
lsi: None,
lse: None,
);
}
mod max {
use core::ops::RangeInclusive;
use crate::time::Hertz;
pub(crate) const HSE_OSC: RangeInclusive<Hertz> = Hertz(4_000_000)..=Hertz(48_000_000);
pub(crate) const HSE_BYP: RangeInclusive<Hertz> = Hertz(0)..=Hertz(48_000_000);
pub(crate) const SYSCLK: RangeInclusive<Hertz> = Hertz(0)..=Hertz(48_000_000);
pub(crate) const PCLK: RangeInclusive<Hertz> = Hertz(8)..=Hertz(48_000_000);
pub(crate) const HCLK: RangeInclusive<Hertz> = Hertz(0)..=Hertz(48_000_000);
}