2024-11-27 17:44:03 +08:00

359 lines
11 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use crate::pac::flash::vals::Latency;
pub use crate::pac::rcc::vals::{
Hpre as AHBPrescaler, Pllm as PllPreDiv, Plln as PllMul, Pllp as PllPDiv, Pllq as PllQDiv, Pllr as PllRDiv,
Pllsrc as PllSource, Ppre as APBPrescaler, Sw as Sysclk,
};
use crate::pac::{FLASH, PWR, RCC};
use crate::time::Hertz;
/// HSI speed
pub const HSI_FREQ: Hertz = Hertz(16_000_000);
/// HSE Mode
#[derive(Clone, Copy, Eq, PartialEq)]
pub enum HseMode {
/// crystal/ceramic oscillator (HSEBYP=0)
Oscillator,
/// external analog clock (low swing) (HSEBYP=1)
Bypass,
}
/// HSE Configuration
#[derive(Clone, Copy, Eq, PartialEq)]
pub struct Hse {
/// HSE frequency.
pub freq: Hertz,
/// HSE mode.
pub mode: HseMode,
}
/// PLL Configuration
///
/// Use this struct to configure the PLL source, input frequency, multiplication factor, and output
/// dividers. Be sure to keep check the datasheet for your specific part for the appropriate
/// frequency ranges for each of these settings.
#[derive(Clone, Copy)]
pub struct Pll {
/// PLL Source clock selection.
pub source: PllSource,
/// PLL pre-divider
pub prediv: PllPreDiv,
/// PLL multiplication factor for VCO
pub mul: PllMul,
/// PLL division factor for P clock (ADC Clock)
pub divp: Option<PllPDiv>,
/// PLL division factor for Q clock (USB, I2S23, SAI1, FDCAN, QSPI)
pub divq: Option<PllQDiv>,
/// PLL division factor for R clock (SYSCLK)
pub divr: Option<PllRDiv>,
}
/// Clocks configutation
#[non_exhaustive]
#[derive(Clone, Copy)]
pub struct Config {
/// HSI Enable
pub hsi: bool,
/// HSE Configuration
pub hse: Option<Hse>,
/// System Clock Configuration
pub sys: Sysclk,
/// HSI48 Configuration
pub hsi48: Option<super::Hsi48Config>,
/// PLL Configuration
pub pll: Option<Pll>,
/// If PLL is requested as the main clock source in the `sys` field then the PLL configuration
/// MUST turn on the PLLR output.
pub ahb_pre: AHBPrescaler,
pub apb1_pre: APBPrescaler,
pub apb2_pre: APBPrescaler,
pub low_power_run: bool,
/// Low-Speed Clock Configuration
pub ls: super::LsConfig,
/// Enable range1 boost mode
/// Recommended when the SYSCLK frequency is greater than 150MHz.
pub boost: bool,
/// Per-peripheral kernel clock selection muxes
pub mux: super::mux::ClockMux,
}
impl Default for Config {
#[inline]
fn default() -> Config {
Config {
hsi: true,
hse: None,
sys: Sysclk::HSI,
hsi48: Some(Default::default()),
pll: None,
ahb_pre: AHBPrescaler::DIV1,
apb1_pre: APBPrescaler::DIV1,
apb2_pre: APBPrescaler::DIV1,
low_power_run: false,
ls: Default::default(),
boost: false,
mux: Default::default(),
}
}
}
#[derive(Default)]
pub struct PllFreq {
pub pll_p: Option<Hertz>,
pub pll_q: Option<Hertz>,
pub pll_r: Option<Hertz>,
}
pub(crate) unsafe fn init(config: Config) {
// Turn on the HSI
RCC.cr().modify(|w| w.set_hsion(true));
while !RCC.cr().read().hsirdy() {}
// Use the HSI clock as system clock during the actual clock setup
RCC.cfgr().modify(|w| w.set_sw(Sysclk::HSI));
while RCC.cfgr().read().sws() != Sysclk::HSI {}
// Configure HSI
let hsi = match config.hsi {
false => None,
true => Some(HSI_FREQ),
};
// Configure HSE
let hse = match config.hse {
None => {
RCC.cr().modify(|w| w.set_hseon(false));
None
}
Some(hse) => {
match hse.mode {
HseMode::Bypass => rcc_assert!(max::HSE_BYP.contains(&hse.freq)),
HseMode::Oscillator => rcc_assert!(max::HSE_OSC.contains(&hse.freq)),
}
RCC.cr().modify(|w| w.set_hsebyp(hse.mode != HseMode::Oscillator));
RCC.cr().modify(|w| w.set_hseon(true));
while !RCC.cr().read().hserdy() {}
Some(hse.freq)
}
};
// Configure HSI48 if required
let hsi48 = config.hsi48.map(super::init_hsi48);
let pll = config
.pll
.map(|pll_config| {
let src_freq = match pll_config.source {
PllSource::HSI => unwrap!(hsi),
PllSource::HSE => unwrap!(hse),
_ => unreachable!(),
};
// Disable PLL before configuration
RCC.cr().modify(|w| w.set_pllon(false));
while RCC.cr().read().pllrdy() {}
let in_freq = src_freq / pll_config.prediv;
rcc_assert!(max::PLL_IN.contains(&in_freq));
let internal_freq = in_freq * pll_config.mul;
rcc_assert!(max::PLL_VCO.contains(&internal_freq));
RCC.pllcfgr().write(|w| {
w.set_plln(pll_config.mul);
w.set_pllm(pll_config.prediv);
w.set_pllsrc(pll_config.source.into());
});
let pll_p_freq = pll_config.divp.map(|div_p| {
RCC.pllcfgr().modify(|w| {
w.set_pllp(div_p);
w.set_pllpen(true);
});
let freq = internal_freq / div_p;
rcc_assert!(max::PLL_P.contains(&freq));
freq
});
let pll_q_freq = pll_config.divq.map(|div_q| {
RCC.pllcfgr().modify(|w| {
w.set_pllq(div_q);
w.set_pllqen(true);
});
let freq = internal_freq / div_q;
rcc_assert!(max::PLL_Q.contains(&freq));
freq
});
let pll_r_freq = pll_config.divr.map(|div_r| {
RCC.pllcfgr().modify(|w| {
w.set_pllr(div_r);
w.set_pllren(true);
});
let freq = internal_freq / div_r;
rcc_assert!(max::PLL_R.contains(&freq));
freq
});
// Enable the PLL
RCC.cr().modify(|w| w.set_pllon(true));
while !RCC.cr().read().pllrdy() {}
PllFreq {
pll_p: pll_p_freq,
pll_q: pll_q_freq,
pll_r: pll_r_freq,
}
})
.unwrap_or_default();
let sys = match config.sys {
Sysclk::HSI => unwrap!(hsi),
Sysclk::HSE => unwrap!(hse),
Sysclk::PLL1_R => unwrap!(pll.pll_r),
_ => unreachable!(),
};
rcc_assert!(max::SYSCLK.contains(&sys));
// Calculate the AHB frequency (HCLK), among other things so we can calculate the correct flash read latency.
let hclk = sys / config.ahb_pre;
rcc_assert!(max::HCLK.contains(&hclk));
let (pclk1, pclk1_tim) = super::util::calc_pclk(hclk, config.apb1_pre);
let (pclk2, pclk2_tim) = super::util::calc_pclk(hclk, config.apb2_pre);
rcc_assert!(max::PCLK.contains(&pclk1));
rcc_assert!(max::PCLK.contains(&pclk2));
// Configure Core Boost mode ([RM0440] p234 inverted because setting r1mode to 0 enables boost mode!)
if config.boost {
// RM0440 p235
// “The sequence to switch from Range1 normal mode to Range1 boost mode is:
// 1. The system clock must be divided by 2 using the AHB prescaler before switching to a higher system frequency.
RCC.cfgr().modify(|w| w.set_hpre(AHBPrescaler::DIV2));
// 2. Clear the R1MODE bit in the PWR_CR5 register. (enables boost mode)
PWR.cr5().modify(|w| w.set_r1mode(false));
// Below:
// 3. Adjust wait states according to new freq target
// 4. Configure and switch to new frequency
}
let latency = match (config.boost, hclk.0) {
(true, ..=34_000_000) => Latency::WS0,
(true, ..=68_000_000) => Latency::WS1,
(true, ..=102_000_000) => Latency::WS2,
(true, ..=136_000_000) => Latency::WS3,
(true, _) => Latency::WS4,
(false, ..=36_000_000) => Latency::WS0,
(false, ..=60_000_000) => Latency::WS1,
(false, ..=90_000_000) => Latency::WS2,
(false, ..=120_000_000) => Latency::WS3,
(false, _) => Latency::WS4,
};
// Configure flash read access latency based on boost mode and frequency (RM0440 p98)
FLASH.acr().modify(|w| {
w.set_latency(latency);
});
// Spin until the effective flash latency is set.
while FLASH.acr().read().latency() != latency {}
if config.boost {
// 5. Wait for at least 1us and then reconfigure the AHB prescaler to get the needed HCLK clock frequency.
cortex_m::asm::delay(16);
}
// Now that boost mode and flash read access latency are configured, set up SYSCLK
RCC.cfgr().modify(|w| {
w.set_sw(config.sys);
w.set_hpre(config.ahb_pre);
w.set_ppre1(config.apb1_pre);
w.set_ppre2(config.apb2_pre);
});
while RCC.cfgr().read().sws() != config.sys {}
// Disable HSI if not used
if !config.hsi {
RCC.cr().modify(|w| w.set_hsion(false));
}
if config.low_power_run {
assert!(sys <= Hertz(2_000_000));
PWR.cr1().modify(|w| w.set_lpr(true));
}
let rtc = config.ls.init();
config.mux.init();
set_clocks!(
sys: Some(sys),
hclk1: Some(hclk),
hclk2: Some(hclk),
hclk3: Some(hclk),
pclk1: Some(pclk1),
pclk1_tim: Some(pclk1_tim),
pclk2: Some(pclk2),
pclk2_tim: Some(pclk2_tim),
pll1_p: pll.pll_p,
pll1_q: pll.pll_q,
pll1_r: pll.pll_r,
hsi: hsi,
hse: hse,
hsi48: hsi48,
rtc: rtc,
);
}
/// Acceptable Frequency Ranges
/// Currently assuming voltage scaling range 1 boost mode.
/// Where not specified in the generic G4 reference manual (RM0440), values taken from the STM32G474 datasheet.
/// If acceptable ranges for other G4-family chips differ, make additional max modules gated behind cfg attrs.
mod max {
use core::ops::RangeInclusive;
use crate::time::Hertz;
/// HSE Frequency Range (RM0440 p280)
pub(crate) const HSE_OSC: RangeInclusive<Hertz> = Hertz(4_000_000)..=Hertz(48_000_000);
/// External Clock Frequency Range (RM0440 p280)
pub(crate) const HSE_BYP: RangeInclusive<Hertz> = Hertz(0)..=Hertz(48_000_000);
/// SYSCLK Frequency Range (RM0440 p282)
pub(crate) const SYSCLK: RangeInclusive<Hertz> = Hertz(0)..=Hertz(170_000_000);
/// PLL Output Frequency Range (RM0440 p281, STM32G474 Datasheet p123, Table 46)
pub(crate) const PCLK: RangeInclusive<Hertz> = Hertz(8)..=Hertz(170_000_000);
/// HCLK (AHB) Clock Frequency Range (STM32G474 Datasheet)
pub(crate) const HCLK: RangeInclusive<Hertz> = Hertz(0)..=Hertz(170_000_000);
/// PLL Source Frequency Range (STM32G474 Datasheet p123, Table 46)
pub(crate) const PLL_IN: RangeInclusive<Hertz> = Hertz(2_660_000)..=Hertz(16_000_000);
/// PLL VCO (internal) Frequency Range (STM32G474 Datasheet p123, Table 46)
pub(crate) const PLL_VCO: RangeInclusive<Hertz> = Hertz(96_000_000)..=Hertz(344_000_000);
pub(crate) const PLL_P: RangeInclusive<Hertz> = Hertz(2_064_500)..=Hertz(170_000_000);
pub(crate) const PLL_Q: RangeInclusive<Hertz> = Hertz(8_000_000)..=Hertz(170_000_000);
pub(crate) const PLL_R: RangeInclusive<Hertz> = Hertz(8_000_000)..=Hertz(170_000_000);
}