500 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			500 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| use digest::Digest;
 | |
| #[cfg(target_os = "none")]
 | |
| use embassy_embedded_hal::flash::partition::BlockingPartition;
 | |
| #[cfg(target_os = "none")]
 | |
| use embassy_sync::blocking_mutex::raw::NoopRawMutex;
 | |
| use embedded_storage::nor_flash::NorFlash;
 | |
| 
 | |
| use super::FirmwareUpdaterConfig;
 | |
| use crate::{FirmwareUpdaterError, State, BOOT_MAGIC, DFU_DETACH_MAGIC, STATE_ERASE_VALUE, SWAP_MAGIC};
 | |
| 
 | |
| /// Blocking FirmwareUpdater is an application API for interacting with the BootLoader without the ability to
 | |
| /// 'mess up' the internal bootloader state
 | |
| pub struct BlockingFirmwareUpdater<'d, DFU: NorFlash, STATE: NorFlash> {
 | |
|     dfu: DFU,
 | |
|     state: BlockingFirmwareState<'d, STATE>,
 | |
|     last_erased_dfu_sector_index: Option<usize>,
 | |
| }
 | |
| 
 | |
| #[cfg(target_os = "none")]
 | |
| impl<'a, DFU: NorFlash, STATE: NorFlash>
 | |
|     FirmwareUpdaterConfig<BlockingPartition<'a, NoopRawMutex, DFU>, BlockingPartition<'a, NoopRawMutex, STATE>>
 | |
| {
 | |
|     /// Constructs a `FirmwareUpdaterConfig` instance from flash memory and address symbols defined in the linker file.
 | |
|     ///
 | |
|     /// This method initializes `BlockingPartition` instances for the DFU (Device Firmware Update), and state
 | |
|     /// partitions, leveraging start and end addresses specified by the linker. These partitions are critical
 | |
|     /// for managing firmware updates, application state, and boot operations within the bootloader.
 | |
|     ///
 | |
|     /// # Parameters
 | |
|     /// - `dfu_flash`: A reference to a mutex-protected `RefCell` for the DFU partition's flash interface.
 | |
|     /// - `state_flash`: A reference to a mutex-protected `RefCell` for the state partition's flash interface.
 | |
|     ///
 | |
|     /// # Safety
 | |
|     /// The method contains `unsafe` blocks for dereferencing raw pointers that represent the start and end addresses
 | |
|     /// of the bootloader's partitions in flash memory. It is crucial that these addresses are accurately defined
 | |
|     /// in the memory.x file to prevent undefined behavior.
 | |
|     ///
 | |
|     /// The caller must ensure that the memory regions defined by these symbols are valid and that the flash memory
 | |
|     /// interfaces provided are compatible with these regions.
 | |
|     ///
 | |
|     /// # Returns
 | |
|     /// A `FirmwareUpdaterConfig` instance with `BlockingPartition` instances for the DFU, and state partitions.
 | |
|     ///
 | |
|     /// # Example
 | |
|     /// ```ignore
 | |
|     /// // Assume `dfu_flash`, and `state_flash` share the same flash memory interface.
 | |
|     /// let layout = Flash::new_blocking(p.FLASH).into_blocking_regions();
 | |
|     /// let flash = Mutex::new(RefCell::new(layout.bank1_region));
 | |
|     ///
 | |
|     /// let config = FirmwareUpdaterConfig::from_linkerfile_blocking(&flash, &flash);
 | |
|     /// // `config` can now be used to create a `FirmwareUpdater` instance for managing boot operations.
 | |
|     /// ```
 | |
|     /// Working examples can be found in the bootloader examples folder.
 | |
|     pub fn from_linkerfile_blocking(
 | |
|         dfu_flash: &'a embassy_sync::blocking_mutex::Mutex<NoopRawMutex, core::cell::RefCell<DFU>>,
 | |
|         state_flash: &'a embassy_sync::blocking_mutex::Mutex<NoopRawMutex, core::cell::RefCell<STATE>>,
 | |
|     ) -> Self {
 | |
|         extern "C" {
 | |
|             static __bootloader_state_start: u32;
 | |
|             static __bootloader_state_end: u32;
 | |
|             static __bootloader_dfu_start: u32;
 | |
|             static __bootloader_dfu_end: u32;
 | |
|         }
 | |
| 
 | |
|         let dfu = unsafe {
 | |
|             let start = &__bootloader_dfu_start as *const u32 as u32;
 | |
|             let end = &__bootloader_dfu_end as *const u32 as u32;
 | |
|             trace!("DFU: 0x{:x} - 0x{:x}", start, end);
 | |
| 
 | |
|             BlockingPartition::new(dfu_flash, start, end - start)
 | |
|         };
 | |
|         let state = unsafe {
 | |
|             let start = &__bootloader_state_start as *const u32 as u32;
 | |
|             let end = &__bootloader_state_end as *const u32 as u32;
 | |
|             trace!("STATE: 0x{:x} - 0x{:x}", start, end);
 | |
| 
 | |
|             BlockingPartition::new(state_flash, start, end - start)
 | |
|         };
 | |
| 
 | |
|         Self { dfu, state }
 | |
|     }
 | |
| }
 | |
| 
 | |
| impl<'d, DFU: NorFlash, STATE: NorFlash> BlockingFirmwareUpdater<'d, DFU, STATE> {
 | |
|     /// Create a firmware updater instance with partition ranges for the update and state partitions.
 | |
|     ///
 | |
|     /// # Safety
 | |
|     ///
 | |
|     /// The `aligned` buffer must have a size of STATE::WRITE_SIZE, and follow the alignment rules for the flash being read from
 | |
|     /// and written to.
 | |
|     pub fn new(config: FirmwareUpdaterConfig<DFU, STATE>, aligned: &'d mut [u8]) -> Self {
 | |
|         Self {
 | |
|             dfu: config.dfu,
 | |
|             state: BlockingFirmwareState::new(config.state, aligned),
 | |
|             last_erased_dfu_sector_index: None,
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Obtain the current state.
 | |
|     ///
 | |
|     /// This is useful to check if the bootloader has just done a swap, in order
 | |
|     /// to do verifications and self-tests of the new image before calling
 | |
|     /// `mark_booted`.
 | |
|     pub fn get_state(&mut self) -> Result<State, FirmwareUpdaterError> {
 | |
|         self.state.get_state()
 | |
|     }
 | |
| 
 | |
|     /// Verify the DFU given a public key. If there is an error then DO NOT
 | |
|     /// proceed with updating the firmware as it must be signed with a
 | |
|     /// corresponding private key (otherwise it could be malicious firmware).
 | |
|     ///
 | |
|     /// Mark to trigger firmware swap on next boot if verify succeeds.
 | |
|     ///
 | |
|     /// If the "ed25519-salty" feature is set (or another similar feature) then the signature is expected to have
 | |
|     /// been generated from a SHA-512 digest of the firmware bytes.
 | |
|     ///
 | |
|     /// If no signature feature is set then this method will always return a
 | |
|     /// signature error.
 | |
|     #[cfg(feature = "_verify")]
 | |
|     pub fn verify_and_mark_updated(
 | |
|         &mut self,
 | |
|         _public_key: &[u8; 32],
 | |
|         _signature: &[u8; 64],
 | |
|         _update_len: u32,
 | |
|     ) -> Result<(), FirmwareUpdaterError> {
 | |
|         assert!(_update_len <= self.dfu.capacity() as u32);
 | |
| 
 | |
|         self.state.verify_booted()?;
 | |
| 
 | |
|         #[cfg(feature = "ed25519-dalek")]
 | |
|         {
 | |
|             use ed25519_dalek::{Signature, SignatureError, Verifier, VerifyingKey};
 | |
| 
 | |
|             use crate::digest_adapters::ed25519_dalek::Sha512;
 | |
| 
 | |
|             let into_signature_error = |e: SignatureError| FirmwareUpdaterError::Signature(e.into());
 | |
| 
 | |
|             let public_key = VerifyingKey::from_bytes(_public_key).map_err(into_signature_error)?;
 | |
|             let signature = Signature::from_bytes(_signature);
 | |
| 
 | |
|             let mut message = [0; 64];
 | |
|             let mut chunk_buf = [0; 2];
 | |
|             self.hash::<Sha512>(_update_len, &mut chunk_buf, &mut message)?;
 | |
| 
 | |
|             public_key.verify(&message, &signature).map_err(into_signature_error)?
 | |
|         }
 | |
|         #[cfg(feature = "ed25519-salty")]
 | |
|         {
 | |
|             use salty::{PublicKey, Signature};
 | |
| 
 | |
|             use crate::digest_adapters::salty::Sha512;
 | |
| 
 | |
|             fn into_signature_error<E>(_: E) -> FirmwareUpdaterError {
 | |
|                 FirmwareUpdaterError::Signature(signature::Error::default())
 | |
|             }
 | |
| 
 | |
|             let public_key = PublicKey::try_from(_public_key).map_err(into_signature_error)?;
 | |
|             let signature = Signature::try_from(_signature).map_err(into_signature_error)?;
 | |
| 
 | |
|             let mut message = [0; 64];
 | |
|             let mut chunk_buf = [0; 2];
 | |
|             self.hash::<Sha512>(_update_len, &mut chunk_buf, &mut message)?;
 | |
| 
 | |
|             let r = public_key.verify(&message, &signature);
 | |
|             trace!(
 | |
|                 "Verifying with public key {}, signature {} and message {} yields ok: {}",
 | |
|                 public_key.to_bytes(),
 | |
|                 signature.to_bytes(),
 | |
|                 message,
 | |
|                 r.is_ok()
 | |
|             );
 | |
|             r.map_err(into_signature_error)?
 | |
|         }
 | |
| 
 | |
|         self.state.mark_updated()
 | |
|     }
 | |
| 
 | |
|     /// Verify the update in DFU with any digest.
 | |
|     pub fn hash<D: Digest>(
 | |
|         &mut self,
 | |
|         update_len: u32,
 | |
|         chunk_buf: &mut [u8],
 | |
|         output: &mut [u8],
 | |
|     ) -> Result<(), FirmwareUpdaterError> {
 | |
|         let mut digest = D::new();
 | |
|         for offset in (0..update_len).step_by(chunk_buf.len()) {
 | |
|             self.dfu.read(offset, chunk_buf)?;
 | |
|             let len = core::cmp::min((update_len - offset) as usize, chunk_buf.len());
 | |
|             digest.update(&chunk_buf[..len]);
 | |
|         }
 | |
|         output.copy_from_slice(digest.finalize().as_slice());
 | |
|         Ok(())
 | |
|     }
 | |
| 
 | |
|     /// Mark to trigger firmware swap on next boot.
 | |
|     #[cfg(not(feature = "_verify"))]
 | |
|     pub fn mark_updated(&mut self) -> Result<(), FirmwareUpdaterError> {
 | |
|         self.state.mark_updated()
 | |
|     }
 | |
| 
 | |
|     /// Mark to trigger USB DFU device on next boot.
 | |
|     pub fn mark_dfu(&mut self) -> Result<(), FirmwareUpdaterError> {
 | |
|         self.state.verify_booted()?;
 | |
|         self.state.mark_dfu()
 | |
|     }
 | |
| 
 | |
|     /// Mark firmware boot successful and stop rollback on reset.
 | |
|     pub fn mark_booted(&mut self) -> Result<(), FirmwareUpdaterError> {
 | |
|         self.state.mark_booted()
 | |
|     }
 | |
| 
 | |
|     /// Writes firmware data to the device.
 | |
|     ///
 | |
|     /// This function writes the given data to the firmware area starting at the specified offset.
 | |
|     /// It handles sector erasures and data writes while verifying the device is in a proper state
 | |
|     /// for firmware updates. The function ensures that only unerased sectors are erased before
 | |
|     /// writing and efficiently handles the writing process across sector boundaries and in
 | |
|     /// various configurations (data size, sector size, etc.).
 | |
|     ///
 | |
|     /// # Arguments
 | |
|     ///
 | |
|     /// * `offset` - The starting offset within the firmware area where data writing should begin.
 | |
|     /// * `data` - A slice of bytes representing the firmware data to be written. It must be a
 | |
|     /// multiple of NorFlash WRITE_SIZE.
 | |
|     ///
 | |
|     /// # Returns
 | |
|     ///
 | |
|     /// A `Result<(), FirmwareUpdaterError>` indicating the success or failure of the write operation.
 | |
|     ///
 | |
|     /// # Errors
 | |
|     ///
 | |
|     /// This function will return an error if:
 | |
|     ///
 | |
|     /// - The device is not in a proper state to receive firmware updates (e.g., not booted).
 | |
|     /// - There is a failure erasing a sector before writing.
 | |
|     /// - There is a failure writing data to the device.
 | |
|     pub fn write_firmware(&mut self, offset: usize, data: &[u8]) -> Result<(), FirmwareUpdaterError> {
 | |
|         // Make sure we are running a booted firmware to avoid reverting to a bad state.
 | |
|         self.state.verify_booted()?;
 | |
| 
 | |
|         // Initialize variables to keep track of the remaining data and the current offset.
 | |
|         let mut remaining_data = data;
 | |
|         let mut offset = offset;
 | |
| 
 | |
|         // Continue writing as long as there is data left to write.
 | |
|         while !remaining_data.is_empty() {
 | |
|             // Compute the current sector and its boundaries.
 | |
|             let current_sector = offset / DFU::ERASE_SIZE;
 | |
|             let sector_start = current_sector * DFU::ERASE_SIZE;
 | |
|             let sector_end = sector_start + DFU::ERASE_SIZE;
 | |
|             // Determine if the current sector needs to be erased before writing.
 | |
|             let need_erase = self
 | |
|                 .last_erased_dfu_sector_index
 | |
|                 .map_or(true, |last_erased_sector| current_sector != last_erased_sector);
 | |
| 
 | |
|             // If the sector needs to be erased, erase it and update the last erased sector index.
 | |
|             if need_erase {
 | |
|                 self.dfu.erase(sector_start as u32, sector_end as u32)?;
 | |
|                 self.last_erased_dfu_sector_index = Some(current_sector);
 | |
|             }
 | |
| 
 | |
|             // Calculate the size of the data chunk that can be written in the current iteration.
 | |
|             let write_size = core::cmp::min(remaining_data.len(), sector_end - offset);
 | |
|             // Split the data to get the current chunk to be written and the remaining data.
 | |
|             let (data_chunk, rest) = remaining_data.split_at(write_size);
 | |
| 
 | |
|             // Write the current data chunk.
 | |
|             self.dfu.write(offset as u32, data_chunk)?;
 | |
| 
 | |
|             // Update the offset and remaining data for the next iteration.
 | |
|             remaining_data = rest;
 | |
|             offset += write_size;
 | |
|         }
 | |
| 
 | |
|         Ok(())
 | |
|     }
 | |
| 
 | |
|     /// Prepare for an incoming DFU update by erasing the entire DFU area and
 | |
|     /// returning its `Partition`.
 | |
|     ///
 | |
|     /// Using this instead of `write_firmware` allows for an optimized API in
 | |
|     /// exchange for added complexity.
 | |
|     pub fn prepare_update(&mut self) -> Result<&mut DFU, FirmwareUpdaterError> {
 | |
|         self.state.verify_booted()?;
 | |
|         self.dfu.erase(0, self.dfu.capacity() as u32)?;
 | |
| 
 | |
|         Ok(&mut self.dfu)
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Manages the state partition of the firmware update.
 | |
| ///
 | |
| /// Can be used standalone for more fine grained control, or as part of the updater.
 | |
| pub struct BlockingFirmwareState<'d, STATE> {
 | |
|     state: STATE,
 | |
|     aligned: &'d mut [u8],
 | |
| }
 | |
| 
 | |
| impl<'d, STATE: NorFlash> BlockingFirmwareState<'d, STATE> {
 | |
|     /// Creates a firmware state instance from a FirmwareUpdaterConfig, with a buffer for magic content and state partition.
 | |
|     ///
 | |
|     /// # Safety
 | |
|     ///
 | |
|     /// The `aligned` buffer must have a size of STATE::WRITE_SIZE, and follow the alignment rules for the flash being read from
 | |
|     /// and written to.
 | |
|     pub fn from_config<DFU: NorFlash>(config: FirmwareUpdaterConfig<DFU, STATE>, aligned: &'d mut [u8]) -> Self {
 | |
|         Self::new(config.state, aligned)
 | |
|     }
 | |
| 
 | |
|     /// Create a firmware state instance with a buffer for magic content and state partition.
 | |
|     ///
 | |
|     /// # Safety
 | |
|     ///
 | |
|     /// The `aligned` buffer must have a size of STATE::WRITE_SIZE, and follow the alignment rules for the flash being read from
 | |
|     /// and written to.
 | |
|     pub fn new(state: STATE, aligned: &'d mut [u8]) -> Self {
 | |
|         assert_eq!(aligned.len(), STATE::WRITE_SIZE);
 | |
|         Self { state, aligned }
 | |
|     }
 | |
| 
 | |
|     // Make sure we are running a booted firmware to avoid reverting to a bad state.
 | |
|     fn verify_booted(&mut self) -> Result<(), FirmwareUpdaterError> {
 | |
|         if self.get_state()? == State::Boot || self.get_state()? == State::DfuDetach {
 | |
|             Ok(())
 | |
|         } else {
 | |
|             Err(FirmwareUpdaterError::BadState)
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Obtain the current state.
 | |
|     ///
 | |
|     /// This is useful to check if the bootloader has just done a swap, in order
 | |
|     /// to do verifications and self-tests of the new image before calling
 | |
|     /// `mark_booted`.
 | |
|     pub fn get_state(&mut self) -> Result<State, FirmwareUpdaterError> {
 | |
|         self.state.read(0, &mut self.aligned)?;
 | |
| 
 | |
|         if !self.aligned.iter().any(|&b| b != SWAP_MAGIC) {
 | |
|             Ok(State::Swap)
 | |
|         } else if !self.aligned.iter().any(|&b| b != DFU_DETACH_MAGIC) {
 | |
|             Ok(State::DfuDetach)
 | |
|         } else {
 | |
|             Ok(State::Boot)
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /// Mark to trigger firmware swap on next boot.
 | |
|     pub fn mark_updated(&mut self) -> Result<(), FirmwareUpdaterError> {
 | |
|         self.set_magic(SWAP_MAGIC)
 | |
|     }
 | |
| 
 | |
|     /// Mark to trigger USB DFU on next boot.
 | |
|     pub fn mark_dfu(&mut self) -> Result<(), FirmwareUpdaterError> {
 | |
|         self.set_magic(DFU_DETACH_MAGIC)
 | |
|     }
 | |
| 
 | |
|     /// Mark firmware boot successful and stop rollback on reset.
 | |
|     pub fn mark_booted(&mut self) -> Result<(), FirmwareUpdaterError> {
 | |
|         self.set_magic(BOOT_MAGIC)
 | |
|     }
 | |
| 
 | |
|     fn set_magic(&mut self, magic: u8) -> Result<(), FirmwareUpdaterError> {
 | |
|         self.state.read(0, &mut self.aligned)?;
 | |
| 
 | |
|         if self.aligned.iter().any(|&b| b != magic) {
 | |
|             // Read progress validity
 | |
|             self.state.read(STATE::WRITE_SIZE as u32, &mut self.aligned)?;
 | |
| 
 | |
|             if self.aligned.iter().any(|&b| b != STATE_ERASE_VALUE) {
 | |
|                 // The current progress validity marker is invalid
 | |
|             } else {
 | |
|                 // Invalidate progress
 | |
|                 self.aligned.fill(!STATE_ERASE_VALUE);
 | |
|                 self.state.write(STATE::WRITE_SIZE as u32, &self.aligned)?;
 | |
|             }
 | |
| 
 | |
|             // Clear magic and progress
 | |
|             self.state.erase(0, self.state.capacity() as u32)?;
 | |
| 
 | |
|             // Set magic
 | |
|             self.aligned.fill(magic);
 | |
|             self.state.write(0, &self.aligned)?;
 | |
|         }
 | |
|         Ok(())
 | |
|     }
 | |
| }
 | |
| 
 | |
| #[cfg(test)]
 | |
| mod tests {
 | |
|     use core::cell::RefCell;
 | |
| 
 | |
|     use embassy_embedded_hal::flash::partition::BlockingPartition;
 | |
|     use embassy_sync::blocking_mutex::raw::NoopRawMutex;
 | |
|     use embassy_sync::blocking_mutex::Mutex;
 | |
|     use sha1::{Digest, Sha1};
 | |
| 
 | |
|     use super::*;
 | |
|     use crate::mem_flash::MemFlash;
 | |
| 
 | |
|     #[test]
 | |
|     fn can_verify_sha1() {
 | |
|         let flash = Mutex::<NoopRawMutex, _>::new(RefCell::new(MemFlash::<131072, 4096, 8>::default()));
 | |
|         let state = BlockingPartition::new(&flash, 0, 4096);
 | |
|         let dfu = BlockingPartition::new(&flash, 65536, 65536);
 | |
|         let mut aligned = [0; 8];
 | |
| 
 | |
|         let update = [0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66];
 | |
|         let mut to_write = [0; 4096];
 | |
|         to_write[..7].copy_from_slice(update.as_slice());
 | |
| 
 | |
|         let mut updater = BlockingFirmwareUpdater::new(FirmwareUpdaterConfig { dfu, state }, &mut aligned);
 | |
|         updater.write_firmware(0, to_write.as_slice()).unwrap();
 | |
|         let mut chunk_buf = [0; 2];
 | |
|         let mut hash = [0; 20];
 | |
|         updater
 | |
|             .hash::<Sha1>(update.len() as u32, &mut chunk_buf, &mut hash)
 | |
|             .unwrap();
 | |
| 
 | |
|         assert_eq!(Sha1::digest(update).as_slice(), hash);
 | |
|     }
 | |
| 
 | |
|     #[test]
 | |
|     fn can_verify_sha1_sector_bigger_than_chunk() {
 | |
|         let flash = Mutex::<NoopRawMutex, _>::new(RefCell::new(MemFlash::<131072, 4096, 8>::default()));
 | |
|         let state = BlockingPartition::new(&flash, 0, 4096);
 | |
|         let dfu = BlockingPartition::new(&flash, 65536, 65536);
 | |
|         let mut aligned = [0; 8];
 | |
| 
 | |
|         let update = [0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66];
 | |
|         let mut to_write = [0; 4096];
 | |
|         to_write[..7].copy_from_slice(update.as_slice());
 | |
| 
 | |
|         let mut updater = BlockingFirmwareUpdater::new(FirmwareUpdaterConfig { dfu, state }, &mut aligned);
 | |
|         let mut offset = 0;
 | |
|         for chunk in to_write.chunks(1024) {
 | |
|             updater.write_firmware(offset, chunk).unwrap();
 | |
|             offset += chunk.len();
 | |
|         }
 | |
|         let mut chunk_buf = [0; 2];
 | |
|         let mut hash = [0; 20];
 | |
|         updater
 | |
|             .hash::<Sha1>(update.len() as u32, &mut chunk_buf, &mut hash)
 | |
|             .unwrap();
 | |
| 
 | |
|         assert_eq!(Sha1::digest(update).as_slice(), hash);
 | |
|     }
 | |
| 
 | |
|     #[test]
 | |
|     fn can_verify_sha1_sector_smaller_than_chunk() {
 | |
|         let flash = Mutex::<NoopRawMutex, _>::new(RefCell::new(MemFlash::<131072, 1024, 8>::default()));
 | |
|         let state = BlockingPartition::new(&flash, 0, 4096);
 | |
|         let dfu = BlockingPartition::new(&flash, 65536, 65536);
 | |
|         let mut aligned = [0; 8];
 | |
| 
 | |
|         let update = [0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66];
 | |
|         let mut to_write = [0; 4096];
 | |
|         to_write[..7].copy_from_slice(update.as_slice());
 | |
| 
 | |
|         let mut updater = BlockingFirmwareUpdater::new(FirmwareUpdaterConfig { dfu, state }, &mut aligned);
 | |
|         let mut offset = 0;
 | |
|         for chunk in to_write.chunks(2048) {
 | |
|             updater.write_firmware(offset, chunk).unwrap();
 | |
|             offset += chunk.len();
 | |
|         }
 | |
|         let mut chunk_buf = [0; 2];
 | |
|         let mut hash = [0; 20];
 | |
|         updater
 | |
|             .hash::<Sha1>(update.len() as u32, &mut chunk_buf, &mut hash)
 | |
|             .unwrap();
 | |
| 
 | |
|         assert_eq!(Sha1::digest(update).as_slice(), hash);
 | |
|     }
 | |
| 
 | |
|     #[test]
 | |
|     fn can_verify_sha1_cross_sector_boundary() {
 | |
|         let flash = Mutex::<NoopRawMutex, _>::new(RefCell::new(MemFlash::<131072, 1024, 8>::default()));
 | |
|         let state = BlockingPartition::new(&flash, 0, 4096);
 | |
|         let dfu = BlockingPartition::new(&flash, 65536, 65536);
 | |
|         let mut aligned = [0; 8];
 | |
| 
 | |
|         let update = [0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66];
 | |
|         let mut to_write = [0; 4096];
 | |
|         to_write[..7].copy_from_slice(update.as_slice());
 | |
| 
 | |
|         let mut updater = BlockingFirmwareUpdater::new(FirmwareUpdaterConfig { dfu, state }, &mut aligned);
 | |
|         let mut offset = 0;
 | |
|         for chunk in to_write.chunks(896) {
 | |
|             updater.write_firmware(offset, chunk).unwrap();
 | |
|             offset += chunk.len();
 | |
|         }
 | |
|         let mut chunk_buf = [0; 2];
 | |
|         let mut hash = [0; 20];
 | |
|         updater
 | |
|             .hash::<Sha1>(update.len() as u32, &mut chunk_buf, &mut hash)
 | |
|             .unwrap();
 | |
| 
 | |
|         assert_eq!(Sha1::digest(update).as_slice(), hash);
 | |
|     }
 | |
| }
 |