//! This example shows generating audio and sending it to a connected i2s DAC using the PIO //! module of the RP2040. //! //! Connect the i2s DAC as follows: //! bclk : GPIO 18 //! lrc : GPIO 19 //! din : GPIO 20 //! Then hold down the boot select button to trigger a rising triangle waveform. #![no_std] #![no_main] use core::mem; use embassy_executor::Spawner; use embassy_rp::peripherals::PIO0; use embassy_rp::pio::{Config, FifoJoin, InterruptHandler, Pio, ShiftConfig, ShiftDirection}; use embassy_rp::{bind_interrupts, Peripheral}; use fixed::traits::ToFixed; use static_cell::StaticCell; use {defmt_rtt as _, panic_probe as _}; bind_interrupts!(struct Irqs { PIO0_IRQ_0 => InterruptHandler; }); const SAMPLE_RATE: u32 = 48_000; #[embassy_executor::main] async fn main(_spawner: Spawner) { let mut p = embassy_rp::init(Default::default()); // Setup pio state machine for i2s output let mut pio = Pio::new(p.PIO0, Irqs); #[rustfmt::skip] let pio_program = pio_proc::pio_asm!( ".side_set 2", " set x, 14 side 0b01", // side 0bWB - W = Word Clock, B = Bit Clock "left_data:", " out pins, 1 side 0b00", " jmp x-- left_data side 0b01", " out pins 1 side 0b10", " set x, 14 side 0b11", "right_data:", " out pins 1 side 0b10", " jmp x-- right_data side 0b11", " out pins 1 side 0b00", ); let bit_clock_pin = p.PIN_18; let left_right_clock_pin = p.PIN_19; let data_pin = p.PIN_20; let data_pin = pio.common.make_pio_pin(data_pin); let bit_clock_pin = pio.common.make_pio_pin(bit_clock_pin); let left_right_clock_pin = pio.common.make_pio_pin(left_right_clock_pin); let cfg = { let mut cfg = Config::default(); cfg.use_program( &pio.common.load_program(&pio_program.program), &[&bit_clock_pin, &left_right_clock_pin], ); cfg.set_out_pins(&[&data_pin]); const BIT_DEPTH: u32 = 16; const CHANNELS: u32 = 2; let clock_frequency = SAMPLE_RATE * BIT_DEPTH * CHANNELS; cfg.clock_divider = (125_000_000. / clock_frequency as f64 / 2.).to_fixed(); cfg.shift_out = ShiftConfig { threshold: 32, direction: ShiftDirection::Left, auto_fill: true, }; // join fifos to have twice the time to start the next dma transfer cfg.fifo_join = FifoJoin::TxOnly; cfg }; pio.sm0.set_config(&cfg); pio.sm0.set_pin_dirs( embassy_rp::pio::Direction::Out, &[&data_pin, &left_right_clock_pin, &bit_clock_pin], ); // create two audio buffers (back and front) which will take turns being // filled with new audio data and being sent to the pio fifo using dma const BUFFER_SIZE: usize = 960; static DMA_BUFFER: StaticCell<[u32; BUFFER_SIZE * 2]> = StaticCell::new(); let dma_buffer = DMA_BUFFER.init_with(|| [0u32; BUFFER_SIZE * 2]); let (mut back_buffer, mut front_buffer) = dma_buffer.split_at_mut(BUFFER_SIZE); // start pio state machine pio.sm0.set_enable(true); let tx = pio.sm0.tx(); let mut dma_ref = p.DMA_CH0.into_ref(); let mut fade_value: i32 = 0; let mut phase: i32 = 0; loop { // trigger transfer of front buffer data to the pio fifo // but don't await the returned future, yet let dma_future = tx.dma_push(dma_ref.reborrow(), front_buffer); // fade in audio when bootsel is pressed let fade_target = if p.BOOTSEL.is_pressed() { i32::MAX } else { 0 }; // fill back buffer with fresh audio samples before awaiting the dma future for s in back_buffer.iter_mut() { // exponential approach of fade_value => fade_target fade_value += (fade_target - fade_value) >> 14; // generate triangle wave with amplitude and frequency based on fade value phase = (phase + (fade_value >> 22)) & 0xffff; let triangle_sample = (phase as i16 as i32).abs() - 16384; let sample = (triangle_sample * (fade_value >> 15)) >> 16; // duplicate mono sample into lower and upper half of dma word *s = (sample as u16 as u32) * 0x10001; } // now await the dma future. once the dma finishes, the next buffer needs to be queued // within DMA_DEPTH / SAMPLE_RATE = 8 / 48000 seconds = 166us dma_future.await; mem::swap(&mut back_buffer, &mut front_buffer); } }