#[allow(unused)] use pac::adc::vals::{Adc4Dmacfg, Adc4Exten, Adc4OversamplingRatio}; use super::{blocking_delay_us, AdcChannel, AnyAdcChannel, RxDma4, SealedAdcChannel}; use crate::dma::Transfer; pub use crate::pac::adc::regs::Adc4Chselrmod0; pub use crate::pac::adc::vals::{Adc4Presc as Presc, Adc4Res as Resolution, Adc4SampleTime as SampleTime}; use crate::time::Hertz; use crate::{pac, rcc, Peripheral}; const MAX_ADC_CLK_FREQ: Hertz = Hertz::mhz(55); /// Default VREF voltage used for sample conversion to millivolts. pub const VREF_DEFAULT_MV: u32 = 3300; /// VREF voltage used for factory calibration of VREFINTCAL register. pub const VREF_CALIB_MV: u32 = 3300; const VREF_CHANNEL: u8 = 0; const VCORE_CHANNEL: u8 = 12; const TEMP_CHANNEL: u8 = 13; const VBAT_CHANNEL: u8 = 14; const DAC_CHANNEL: u8 = 21; // NOTE: Vrefint/Temperature/Vbat are not available on all ADCs, this currently cannot be modeled with stm32-data, so these are available from the software on all ADCs /// Internal voltage reference channel. pub struct VrefInt; impl AdcChannel for VrefInt {} impl SealedAdcChannel for VrefInt { fn channel(&self) -> u8 { VREF_CHANNEL } } /// Internal temperature channel. pub struct Temperature; impl AdcChannel for Temperature {} impl SealedAdcChannel for Temperature { fn channel(&self) -> u8 { TEMP_CHANNEL } } /// Internal battery voltage channel. pub struct Vbat; impl AdcChannel for Vbat {} impl SealedAdcChannel for Vbat { fn channel(&self) -> u8 { VBAT_CHANNEL } } /// Internal DAC channel. pub struct Dac; impl AdcChannel for Dac {} impl SealedAdcChannel for Dac { fn channel(&self) -> u8 { DAC_CHANNEL } } /// Internal Vcore channel. pub struct Vcore; impl AdcChannel for Vcore {} impl SealedAdcChannel for Vcore { fn channel(&self) -> u8 { VCORE_CHANNEL } } pub enum DacChannel { OUT1, OUT2, } /// Number of samples used for averaging. pub enum Averaging { Disabled, Samples2, Samples4, Samples8, Samples16, Samples32, Samples64, Samples128, Samples256, } pub const fn resolution_to_max_count(res: Resolution) -> u32 { match res { Resolution::BITS12 => (1 << 12) - 1, Resolution::BITS10 => (1 << 10) - 1, Resolution::BITS8 => (1 << 8) - 1, Resolution::BITS6 => (1 << 6) - 1, #[allow(unreachable_patterns)] _ => core::unreachable!(), } } // NOTE (unused): The prescaler enum closely copies the hardware capabilities, // but high prescaling doesn't make a lot of sense in the current implementation and is ommited. #[allow(unused)] enum Prescaler { NotDivided, DividedBy2, DividedBy4, DividedBy6, DividedBy8, DividedBy10, DividedBy12, DividedBy16, DividedBy32, DividedBy64, DividedBy128, DividedBy256, } impl Prescaler { fn from_ker_ck(frequency: Hertz) -> Self { let raw_prescaler = frequency.0 / MAX_ADC_CLK_FREQ.0; match raw_prescaler { 0 => Self::NotDivided, 1 => Self::DividedBy2, 2..=3 => Self::DividedBy4, 4..=5 => Self::DividedBy6, 6..=7 => Self::DividedBy8, 8..=9 => Self::DividedBy10, 10..=11 => Self::DividedBy12, _ => unimplemented!(), } } fn divisor(&self) -> u32 { match self { Prescaler::NotDivided => 1, Prescaler::DividedBy2 => 2, Prescaler::DividedBy4 => 4, Prescaler::DividedBy6 => 6, Prescaler::DividedBy8 => 8, Prescaler::DividedBy10 => 10, Prescaler::DividedBy12 => 12, Prescaler::DividedBy16 => 16, Prescaler::DividedBy32 => 32, Prescaler::DividedBy64 => 64, Prescaler::DividedBy128 => 128, Prescaler::DividedBy256 => 256, } } fn presc(&self) -> Presc { match self { Prescaler::NotDivided => Presc::DIV1, Prescaler::DividedBy2 => Presc::DIV2, Prescaler::DividedBy4 => Presc::DIV4, Prescaler::DividedBy6 => Presc::DIV6, Prescaler::DividedBy8 => Presc::DIV8, Prescaler::DividedBy10 => Presc::DIV10, Prescaler::DividedBy12 => Presc::DIV12, Prescaler::DividedBy16 => Presc::DIV16, Prescaler::DividedBy32 => Presc::DIV32, Prescaler::DividedBy64 => Presc::DIV64, Prescaler::DividedBy128 => Presc::DIV128, Prescaler::DividedBy256 => Presc::DIV256, } } } pub trait SealedInstance { #[allow(unused)] fn regs() -> crate::pac::adc::Adc4; } pub trait Instance: SealedInstance + crate::Peripheral

+ crate::rcc::RccPeripheral { type Interrupt: crate::interrupt::typelevel::Interrupt; } pub struct Adc4<'d, T: Instance> { #[allow(unused)] adc: crate::PeripheralRef<'d, T>, } #[derive(Debug)] pub enum Adc4Error { InvalidSequence, DMAError, } impl<'d, T: Instance> Adc4<'d, T> { /// Create a new ADC driver. pub fn new(adc: impl Peripheral

+ 'd) -> Self { embassy_hal_internal::into_ref!(adc); rcc::enable_and_reset::(); let prescaler = Prescaler::from_ker_ck(T::frequency()); T::regs().ccr().modify(|w| w.set_presc(prescaler.presc())); let frequency = Hertz(T::frequency().0 / prescaler.divisor()); info!("ADC4 frequency set to {} Hz", frequency.0); if frequency > MAX_ADC_CLK_FREQ { panic!("Maximal allowed frequency for ADC4 is {} MHz and it varies with different packages, refer to ST docs for more information.", MAX_ADC_CLK_FREQ.0 / 1_000_000 ); } let mut s = Self { adc }; s.power_up(); s.calibrate(); blocking_delay_us(1); s.enable(); s.configure(); s } fn power_up(&mut self) { T::regs().isr().modify(|w| { w.set_ldordy(true); }); T::regs().cr().modify(|w| { w.set_advregen(true); }); while !T::regs().isr().read().ldordy() {} T::regs().isr().modify(|w| { w.set_ldordy(true); }); } fn calibrate(&mut self) { T::regs().cr().modify(|w| w.set_adcal(true)); while T::regs().cr().read().adcal() {} T::regs().isr().modify(|w| w.set_eocal(true)); } fn enable(&mut self) { T::regs().isr().write(|w| w.set_adrdy(true)); T::regs().cr().modify(|w| w.set_aden(true)); while !T::regs().isr().read().adrdy() {} T::regs().isr().write(|w| w.set_adrdy(true)); } fn configure(&mut self) { // single conversion mode, software trigger T::regs().cfgr1().modify(|w| { w.set_cont(false); w.set_discen(false); w.set_exten(Adc4Exten::DISABLED); w.set_chselrmod(false); }); // only use one channel at the moment T::regs().smpr().modify(|w| { for i in 0..24 { w.set_smpsel(i, false); } }); } /// Enable reading the voltage reference internal channel. pub fn enable_vrefint(&self) -> VrefInt { T::regs().ccr().modify(|w| { w.set_vrefen(true); }); VrefInt {} } /// Enable reading the temperature internal channel. pub fn enable_temperature(&self) -> Temperature { T::regs().ccr().modify(|w| { w.set_vsensesel(true); }); Temperature {} } /// Enable reading the vbat internal channel. pub fn enable_vbat(&self) -> Vbat { T::regs().ccr().modify(|w| { w.set_vbaten(true); }); Vbat {} } /// Enable reading the vbat internal channel. pub fn enable_vcore(&self) -> Vcore { Vcore {} } /// Enable reading the vbat internal channel. pub fn enable_dac_channel(&self, dac: DacChannel) -> Dac { let mux; match dac { DacChannel::OUT1 => mux = false, DacChannel::OUT2 => mux = true, } T::regs().or().modify(|w| w.set_chn21sel(mux)); Dac {} } /// Set the ADC sample time. pub fn set_sample_time(&mut self, sample_time: SampleTime) { T::regs().smpr().modify(|w| { w.set_smp(0, sample_time); }); } /// Get the ADC sample time. pub fn sample_time(&self) -> SampleTime { T::regs().smpr().read().smp(0) } /// Set the ADC resolution. pub fn set_resolution(&mut self, resolution: Resolution) { T::regs().cfgr1().modify(|w| w.set_res(resolution.into())); } /// Set hardware averaging. pub fn set_averaging(&mut self, averaging: Averaging) { let (enable, samples, right_shift) = match averaging { Averaging::Disabled => (false, Adc4OversamplingRatio::OVERSAMPLE2X, 0), Averaging::Samples2 => (true, Adc4OversamplingRatio::OVERSAMPLE2X, 1), Averaging::Samples4 => (true, Adc4OversamplingRatio::OVERSAMPLE4X, 2), Averaging::Samples8 => (true, Adc4OversamplingRatio::OVERSAMPLE8X, 3), Averaging::Samples16 => (true, Adc4OversamplingRatio::OVERSAMPLE16X, 4), Averaging::Samples32 => (true, Adc4OversamplingRatio::OVERSAMPLE32X, 5), Averaging::Samples64 => (true, Adc4OversamplingRatio::OVERSAMPLE64X, 6), Averaging::Samples128 => (true, Adc4OversamplingRatio::OVERSAMPLE128X, 7), Averaging::Samples256 => (true, Adc4OversamplingRatio::OVERSAMPLE256X, 8), }; T::regs().cfgr2().modify(|w| { w.set_ovsr(samples); w.set_ovss(right_shift); w.set_ovse(enable) }) } /// Read an ADC channel. pub fn blocking_read(&mut self, channel: &mut impl AdcChannel) -> u16 { channel.setup(); // Select channel T::regs().chselrmod0().write_value(Adc4Chselrmod0(0_u32)); T::regs().chselrmod0().modify(|w| { w.set_chsel(channel.channel() as usize, true); }); // Reset interrupts T::regs().isr().modify(|reg| { reg.set_eos(true); reg.set_eoc(true); }); // Start conversion T::regs().cr().modify(|reg| { reg.set_adstart(true); }); while !T::regs().isr().read().eos() { // spin } T::regs().dr().read().0 as u16 } /// Read one or multiple ADC channels using DMA. /// /// `sequence` iterator and `readings` must have the same length. /// The channels in `sequence` must be in ascending order. /// /// Example /// ```rust,ignore /// use embassy_stm32::adc::adc4; /// use embassy_stm32::adc::AdcChannel; /// /// let mut adc4 = adc4::Adc4::new(p.ADC4); /// let mut adc4_pin1 = p.PC1; /// let mut adc4_pin2 = p.PC0; /// let mut degraded41 = adc4_pin1.degrade_adc(); /// let mut degraded42 = adc4_pin2.degrade_adc(); /// let mut measurements = [0u16; 2]; /// // not that the channels must be in ascending order /// adc4.read( /// &mut p.GPDMA1_CH1, /// [ /// &mut degraded42, /// &mut degraded41, /// ] /// .into_iter(), /// &mut measurements, /// ).await.unwrap(); /// ``` pub async fn read( &mut self, rx_dma: &mut impl RxDma4, sequence: impl ExactSizeIterator>, readings: &mut [u16], ) -> Result<(), Adc4Error> { assert!(sequence.len() != 0, "Asynchronous read sequence cannot be empty"); assert!( sequence.len() == readings.len(), "Sequence length must be equal to readings length" ); // Ensure no conversions are ongoing Self::cancel_conversions(); T::regs().isr().modify(|reg| { reg.set_ovr(true); reg.set_eos(true); reg.set_eoc(true); }); T::regs().cfgr1().modify(|reg| { reg.set_dmaen(true); reg.set_dmacfg(Adc4Dmacfg::ONE_SHOT); reg.set_chselrmod(false); }); // Verify and activate sequence let mut prev_channel: i16 = -1; T::regs().chselrmod0().write_value(Adc4Chselrmod0(0_u32)); for channel in sequence { let channel_num = channel.channel; if channel_num as i16 <= prev_channel { return Err(Adc4Error::InvalidSequence); }; prev_channel = channel_num as i16; T::regs().chselrmod0().modify(|w| { w.set_chsel(channel.channel as usize, true); }); } let request = rx_dma.request(); let transfer = unsafe { Transfer::new_read( rx_dma, request, T::regs().dr().as_ptr() as *mut u16, readings, Default::default(), ) }; // Start conversion T::regs().cr().modify(|reg| { reg.set_adstart(true); }); transfer.await; // Ensure conversions are finished. Self::cancel_conversions(); // Reset configuration. T::regs().cfgr1().modify(|reg| { reg.set_dmaen(false); }); if T::regs().isr().read().ovr() { Err(Adc4Error::DMAError) } else { Ok(()) } } fn cancel_conversions() { if T::regs().cr().read().adstart() && !T::regs().cr().read().addis() { T::regs().cr().modify(|reg| { reg.set_adstp(true); }); while T::regs().cr().read().adstart() {} } } }