#[cfg(not(stm32u5))] use pac::adc::vals::{Adcaldif, Boost}; #[allow(unused)] use pac::adc::vals::{Adstp, Difsel, Dmngt, Exten, Pcsel}; use pac::adccommon::vals::Presc; use super::{ blocking_delay_us, Adc, AdcChannel, AnyAdcChannel, Instance, Resolution, RxDma, SampleTime, SealedAdcChannel, }; use crate::dma::Transfer; use crate::time::Hertz; use crate::{pac, rcc, Peri}; /// Default VREF voltage used for sample conversion to millivolts. pub const VREF_DEFAULT_MV: u32 = 3300; /// VREF voltage used for factory calibration of VREFINTCAL register. pub const VREF_CALIB_MV: u32 = 3300; /// Max single ADC operation clock frequency #[cfg(stm32g4)] const MAX_ADC_CLK_FREQ: Hertz = Hertz::mhz(60); #[cfg(stm32h7)] const MAX_ADC_CLK_FREQ: Hertz = Hertz::mhz(50); #[cfg(stm32u5)] const MAX_ADC_CLK_FREQ: Hertz = Hertz::mhz(55); #[cfg(stm32g4)] const VREF_CHANNEL: u8 = 18; #[cfg(stm32g4)] const TEMP_CHANNEL: u8 = 16; #[cfg(stm32h7)] const VREF_CHANNEL: u8 = 19; #[cfg(stm32h7)] const TEMP_CHANNEL: u8 = 18; // TODO this should be 14 for H7a/b/35 #[cfg(not(stm32u5))] const VBAT_CHANNEL: u8 = 17; #[cfg(stm32u5)] const VREF_CHANNEL: u8 = 0; #[cfg(stm32u5)] const TEMP_CHANNEL: u8 = 19; #[cfg(stm32u5)] const VBAT_CHANNEL: u8 = 18; // NOTE: Vrefint/Temperature/Vbat are not available on all ADCs, this currently cannot be modeled with stm32-data, so these are available from the software on all ADCs /// Internal voltage reference channel. pub struct VrefInt; impl AdcChannel for VrefInt {} impl SealedAdcChannel for VrefInt { fn channel(&self) -> u8 { VREF_CHANNEL } } /// Internal temperature channel. pub struct Temperature; impl AdcChannel for Temperature {} impl SealedAdcChannel for Temperature { fn channel(&self) -> u8 { TEMP_CHANNEL } } /// Internal battery voltage channel. pub struct Vbat; impl AdcChannel for Vbat {} impl SealedAdcChannel for Vbat { fn channel(&self) -> u8 { VBAT_CHANNEL } } // NOTE (unused): The prescaler enum closely copies the hardware capabilities, // but high prescaling doesn't make a lot of sense in the current implementation and is ommited. #[allow(unused)] enum Prescaler { NotDivided, DividedBy2, DividedBy4, DividedBy6, DividedBy8, DividedBy10, DividedBy12, DividedBy16, DividedBy32, DividedBy64, DividedBy128, DividedBy256, } impl Prescaler { fn from_ker_ck(frequency: Hertz) -> Self { let raw_prescaler = frequency.0 / MAX_ADC_CLK_FREQ.0; match raw_prescaler { 0 => Self::NotDivided, 1 => Self::DividedBy2, 2..=3 => Self::DividedBy4, 4..=5 => Self::DividedBy6, 6..=7 => Self::DividedBy8, 8..=9 => Self::DividedBy10, 10..=11 => Self::DividedBy12, _ => unimplemented!(), } } fn divisor(&self) -> u32 { match self { Prescaler::NotDivided => 1, Prescaler::DividedBy2 => 2, Prescaler::DividedBy4 => 4, Prescaler::DividedBy6 => 6, Prescaler::DividedBy8 => 8, Prescaler::DividedBy10 => 10, Prescaler::DividedBy12 => 12, Prescaler::DividedBy16 => 16, Prescaler::DividedBy32 => 32, Prescaler::DividedBy64 => 64, Prescaler::DividedBy128 => 128, Prescaler::DividedBy256 => 256, } } fn presc(&self) -> Presc { match self { Prescaler::NotDivided => Presc::DIV1, Prescaler::DividedBy2 => Presc::DIV2, Prescaler::DividedBy4 => Presc::DIV4, Prescaler::DividedBy6 => Presc::DIV6, Prescaler::DividedBy8 => Presc::DIV8, Prescaler::DividedBy10 => Presc::DIV10, Prescaler::DividedBy12 => Presc::DIV12, Prescaler::DividedBy16 => Presc::DIV16, Prescaler::DividedBy32 => Presc::DIV32, Prescaler::DividedBy64 => Presc::DIV64, Prescaler::DividedBy128 => Presc::DIV128, Prescaler::DividedBy256 => Presc::DIV256, } } } /// Number of samples used for averaging. pub enum Averaging { Disabled, Samples2, Samples4, Samples8, Samples16, Samples32, Samples64, Samples128, Samples256, Samples512, Samples1024, } impl<'d, T: Instance> Adc<'d, T> { /// Create a new ADC driver. pub fn new(adc: Peri<'d, T>) -> Self { rcc::enable_and_reset::(); let prescaler = Prescaler::from_ker_ck(T::frequency()); T::common_regs().ccr().modify(|w| w.set_presc(prescaler.presc())); let frequency = Hertz(T::frequency().0 / prescaler.divisor()); info!("ADC frequency set to {} Hz", frequency.0); if frequency > MAX_ADC_CLK_FREQ { panic!("Maximal allowed frequency for the ADC is {} MHz and it varies with different packages, refer to ST docs for more information.", MAX_ADC_CLK_FREQ.0 / 1_000_000 ); } #[cfg(stm32h7)] { let boost = if frequency < Hertz::khz(6_250) { Boost::LT6_25 } else if frequency < Hertz::khz(12_500) { Boost::LT12_5 } else if frequency < Hertz::mhz(25) { Boost::LT25 } else { Boost::LT50 }; T::regs().cr().modify(|w| w.set_boost(boost)); } let mut s = Self { adc, sample_time: SampleTime::from_bits(0), }; s.power_up(); s.configure_differential_inputs(); s.calibrate(); blocking_delay_us(1); s.enable(); s.configure(); s } fn power_up(&mut self) { T::regs().cr().modify(|reg| { reg.set_deeppwd(false); reg.set_advregen(true); }); blocking_delay_us(10); } fn configure_differential_inputs(&mut self) { T::regs().difsel().modify(|w| { for n in 0..20 { w.set_difsel(n, Difsel::SINGLE_ENDED); } }); } fn calibrate(&mut self) { T::regs().cr().modify(|w| { #[cfg(not(adc_u5))] w.set_adcaldif(Adcaldif::SINGLE_ENDED); w.set_adcallin(true); }); T::regs().cr().modify(|w| w.set_adcal(true)); while T::regs().cr().read().adcal() {} } fn enable(&mut self) { T::regs().isr().write(|w| w.set_adrdy(true)); T::regs().cr().modify(|w| w.set_aden(true)); while !T::regs().isr().read().adrdy() {} T::regs().isr().write(|w| w.set_adrdy(true)); } fn configure(&mut self) { // single conversion mode, software trigger T::regs().cfgr().modify(|w| { w.set_cont(false); w.set_exten(Exten::DISABLED); }); } /// Enable reading the voltage reference internal channel. pub fn enable_vrefint(&self) -> VrefInt { T::common_regs().ccr().modify(|reg| { reg.set_vrefen(true); }); VrefInt {} } /// Enable reading the temperature internal channel. pub fn enable_temperature(&self) -> Temperature { T::common_regs().ccr().modify(|reg| { reg.set_vsenseen(true); }); Temperature {} } /// Enable reading the vbat internal channel. pub fn enable_vbat(&self) -> Vbat { T::common_regs().ccr().modify(|reg| { reg.set_vbaten(true); }); Vbat {} } /// Set the ADC sample time. pub fn set_sample_time(&mut self, sample_time: SampleTime) { self.sample_time = sample_time; } /// Get the ADC sample time. pub fn sample_time(&self) -> SampleTime { self.sample_time } /// Set the ADC resolution. pub fn set_resolution(&mut self, resolution: Resolution) { T::regs().cfgr().modify(|reg| reg.set_res(resolution.into())); } /// Set hardware averaging. pub fn set_averaging(&mut self, averaging: Averaging) { let (enable, samples, right_shift) = match averaging { Averaging::Disabled => (false, 0, 0), Averaging::Samples2 => (true, 1, 1), Averaging::Samples4 => (true, 3, 2), Averaging::Samples8 => (true, 7, 3), Averaging::Samples16 => (true, 15, 4), Averaging::Samples32 => (true, 31, 5), Averaging::Samples64 => (true, 63, 6), Averaging::Samples128 => (true, 127, 7), Averaging::Samples256 => (true, 255, 8), Averaging::Samples512 => (true, 511, 9), Averaging::Samples1024 => (true, 1023, 10), }; T::regs().cfgr2().modify(|reg| { reg.set_rovse(enable); reg.set_osvr(samples); reg.set_ovss(right_shift); }) } /// Perform a single conversion. fn convert(&mut self) -> u16 { T::regs().isr().modify(|reg| { reg.set_eos(true); reg.set_eoc(true); }); // Start conversion T::regs().cr().modify(|reg| { reg.set_adstart(true); }); while !T::regs().isr().read().eos() { // spin } T::regs().dr().read().0 as u16 } /// Read an ADC channel. pub fn blocking_read(&mut self, channel: &mut impl AdcChannel) -> u16 { self.read_channel(channel) } /// Read one or multiple ADC channels using DMA. /// /// `sequence` iterator and `readings` must have the same length. /// /// Example /// ```rust,ignore /// use embassy_stm32::adc::{Adc, AdcChannel} /// /// let mut adc = Adc::new(p.ADC1); /// let mut adc_pin0 = p.PA0.into(); /// let mut adc_pin2 = p.PA2.into(); /// let mut measurements = [0u16; 2]; /// /// adc.read_async( /// p.DMA2_CH0, /// [ /// (&mut *adc_pin0, SampleTime::CYCLES112), /// (&mut *adc_pin2, SampleTime::CYCLES112), /// ] /// .into_iter(), /// &mut measurements, /// ) /// .await; /// defmt::info!("measurements: {}", measurements); /// ``` pub async fn read( &mut self, rx_dma: Peri<'_, impl RxDma>, sequence: impl ExactSizeIterator, SampleTime)>, readings: &mut [u16], ) { assert!(sequence.len() != 0, "Asynchronous read sequence cannot be empty"); assert!( sequence.len() == readings.len(), "Sequence length must be equal to readings length" ); assert!( sequence.len() <= 16, "Asynchronous read sequence cannot be more than 16 in length" ); // Ensure no conversions are ongoing Self::cancel_conversions(); // Set sequence length T::regs().sqr1().modify(|w| { w.set_l(sequence.len() as u8 - 1); }); // Configure channels and ranks for (i, (channel, sample_time)) in sequence.enumerate() { Self::configure_channel(channel, sample_time); match i { 0..=3 => { T::regs().sqr1().modify(|w| { w.set_sq(i, channel.channel()); }); } 4..=8 => { T::regs().sqr2().modify(|w| { w.set_sq(i - 4, channel.channel()); }); } 9..=13 => { T::regs().sqr3().modify(|w| { w.set_sq(i - 9, channel.channel()); }); } 14..=15 => { T::regs().sqr4().modify(|w| { w.set_sq(i - 14, channel.channel()); }); } _ => unreachable!(), } } // Set continuous mode with oneshot dma. // Clear overrun flag before starting transfer. T::regs().isr().modify(|reg| { reg.set_ovr(true); }); T::regs().cfgr().modify(|reg| { reg.set_cont(true); reg.set_dmngt(Dmngt::DMA_ONE_SHOT); }); let request = rx_dma.request(); let transfer = unsafe { Transfer::new_read( rx_dma, request, T::regs().dr().as_ptr() as *mut u16, readings, Default::default(), ) }; // Start conversion T::regs().cr().modify(|reg| { reg.set_adstart(true); }); // Wait for conversion sequence to finish. transfer.await; // Ensure conversions are finished. Self::cancel_conversions(); // Reset configuration. T::regs().cfgr().modify(|reg| { reg.set_cont(false); reg.set_dmngt(Dmngt::from_bits(0)); }); } fn configure_channel(channel: &mut impl AdcChannel, sample_time: SampleTime) { channel.setup(); let channel = channel.channel(); Self::set_channel_sample_time(channel, sample_time); #[cfg(any(stm32h7, stm32u5))] { T::regs().cfgr2().modify(|w| w.set_lshift(0)); T::regs() .pcsel() .modify(|w| w.set_pcsel(channel as _, Pcsel::PRESELECTED)); } } fn read_channel(&mut self, channel: &mut impl AdcChannel) -> u16 { Self::configure_channel(channel, self.sample_time); T::regs().sqr1().modify(|reg| { reg.set_sq(0, channel.channel()); reg.set_l(0); }); self.convert() } fn set_channel_sample_time(ch: u8, sample_time: SampleTime) { let sample_time = sample_time.into(); if ch <= 9 { T::regs().smpr(0).modify(|reg| reg.set_smp(ch as _, sample_time)); } else { T::regs().smpr(1).modify(|reg| reg.set_smp((ch - 10) as _, sample_time)); } } fn cancel_conversions() { if T::regs().cr().read().adstart() && !T::regs().cr().read().addis() { T::regs().cr().modify(|reg| { reg.set_adstp(Adstp::STOP); }); while T::regs().cr().read().adstart() {} } } }