use crate::pac::flash::vals::Latency; use crate::pac::rcc::vals::Pllsrc; pub use crate::pac::rcc::vals::{ Hpre as AHBPrescaler, Pllmul as PllMul, Ppre as APBPrescaler, Prediv as PllPreDiv, Sw as Sysclk, }; use crate::pac::{FLASH, RCC}; use crate::time::Hertz; /// HSI speed pub const HSI_FREQ: Hertz = Hertz(8_000_000); #[derive(Clone, Copy, Eq, PartialEq)] pub enum HseMode { /// crystal/ceramic oscillator (HSEBYP=0) Oscillator, /// external analog clock (low swing) (HSEBYP=1) Bypass, } #[derive(Clone, Copy, Eq, PartialEq)] pub struct Hse { /// HSE frequency. pub freq: Hertz, /// HSE mode. pub mode: HseMode, } #[derive(Clone, Copy, Eq, PartialEq)] pub enum PllSource { HSE, HSI, #[cfg(rcc_f0v4)] HSI48, } #[derive(Clone, Copy)] pub struct Pll { pub src: PllSource, /// PLL pre-divider. /// /// On some chips, this must be 2 if `src == HSI`. Init will panic if this is not the case. pub prediv: PllPreDiv, /// PLL multiplication factor. pub mul: PllMul, } /// Clocks configutation #[non_exhaustive] pub struct Config { pub hsi: bool, pub hse: Option, #[cfg(crs)] pub hsi48: Option, pub sys: Sysclk, pub pll: Option, pub ahb_pre: AHBPrescaler, pub apb1_pre: APBPrescaler, pub ls: super::LsConfig, } impl Default for Config { fn default() -> Self { Self { hsi: true, hse: None, #[cfg(crs)] hsi48: Some(Default::default()), sys: Sysclk::HSI, pll: None, ahb_pre: AHBPrescaler::DIV1, apb1_pre: APBPrescaler::DIV1, ls: Default::default(), } } } /// Initialize and Set the clock frequencies pub(crate) unsafe fn init(config: Config) { // Configure HSI let hsi = match config.hsi { false => { RCC.cr().modify(|w| w.set_hsion(false)); None } true => { RCC.cr().modify(|w| w.set_hsion(true)); while !RCC.cr().read().hsirdy() {} Some(HSI_FREQ) } }; // Configure HSE let hse = match config.hse { None => { RCC.cr().modify(|w| w.set_hseon(false)); None } Some(hse) => { match hse.mode { HseMode::Bypass => assert!(max::HSE_BYP.contains(&hse.freq)), HseMode::Oscillator => assert!(max::HSE_OSC.contains(&hse.freq)), } RCC.cr().modify(|w| w.set_hsebyp(hse.mode != HseMode::Oscillator)); RCC.cr().modify(|w| w.set_hseon(true)); while !RCC.cr().read().hserdy() {} Some(hse.freq) } }; // configure HSI48 #[cfg(crs)] let hsi48 = config.hsi48.map(|config| super::init_hsi48(config)); #[cfg(not(crs))] let hsi48: Option = None; // Enable PLL let pll = config.pll.map(|pll| { let (src_val, src_freq) = match pll.src { #[cfg(not(any(rcc_f0v1, rcc_f0v2)))] PllSource::HSI => (Pllsrc::HSI_DIV_PREDIV, unwrap!(hsi)), #[cfg(any(rcc_f0v1, rcc_f0v2))] PllSource::HSI => { if pll.prediv != PllPreDiv::DIV2 { panic!("if PLL source is HSI, PLL prediv must be 2."); } (Pllsrc::HSI_DIV2, unwrap!(hsi)) } PllSource::HSE => (Pllsrc::HSE_DIV_PREDIV, unwrap!(hse)), #[cfg(rcc_f0v4)] PllSource::HSI48 => (Pllsrc::HSI48_DIV_PREDIV, unwrap!(hsi48)), }; let in_freq = src_freq / pll.prediv; assert!(max::PLL_IN.contains(&in_freq)); let out_freq = in_freq * pll.mul; assert!(max::PLL_OUT.contains(&out_freq)); RCC.cfgr2().modify(|w| w.set_prediv(pll.prediv)); RCC.cfgr().modify(|w| { w.set_pllmul(pll.mul); w.set_pllsrc(src_val); }); RCC.cr().modify(|w| w.set_pllon(true)); while !RCC.cr().read().pllrdy() {} out_freq }); // Configure sysclk let sys = match config.sys { Sysclk::HSI => unwrap!(hsi), Sysclk::HSE => unwrap!(hse), Sysclk::PLL1_P => unwrap!(pll), #[cfg(rcc_f0v4)] Sysclk::HSI48 => unwrap!(hsi48), #[allow(unreachable_patterns)] _ => unreachable!(), }; let hclk = sys / config.ahb_pre; let (pclk1, pclk1_tim) = super::util::calc_pclk(hclk, config.apb1_pre); assert!(max::HCLK.contains(&hclk)); assert!(max::PCLK1.contains(&pclk1)); // Set latency based on HCLK frquency let latency = match hclk.0 { ..=24_000_000 => Latency::WS0, _ => Latency::WS1, }; FLASH.acr().modify(|w| { w.set_latency(latency); w.set_prftbe(true); }); // Set prescalers // CFGR has been written before (PLL, PLL48) don't overwrite these settings RCC.cfgr().modify(|w| { w.set_ppre(config.apb1_pre); w.set_hpre(config.ahb_pre); }); // Wait for the new prescalers to kick in // "The clocks are divided with the new prescaler factor from // 1 to 16 AHB cycles after write" cortex_m::asm::delay(16); // CFGR has been written before (PLL, PLL48, clock divider) don't overwrite these settings RCC.cfgr().modify(|w| w.set_sw(config.sys)); while RCC.cfgr().read().sws() != config.sys {} let rtc = config.ls.init(); set_clocks!( hsi: hsi, hse: hse, pll1_p: pll, sys: Some(sys), pclk1: Some(pclk1), pclk2: Some(pclk1), pclk1_tim: Some(pclk1_tim), pclk2_tim: Some(pclk1_tim), hclk1: Some(hclk), #[cfg(all(not(rcc_f37), adc3_common))] adc34: Some(adc34), #[cfg(stm32f334)] hrtim: hrtim, hsi48: hsi48, rtc: rtc, lse: None, ); } mod max { use core::ops::RangeInclusive; use crate::time::Hertz; pub(crate) const HSE_OSC: RangeInclusive = Hertz(4_000_000)..=Hertz(32_000_000); pub(crate) const HSE_BYP: RangeInclusive = Hertz(1_000_000)..=Hertz(32_000_000); pub(crate) const HCLK: RangeInclusive = Hertz(0)..=Hertz(48_000_000); pub(crate) const PCLK1: RangeInclusive = Hertz(0)..=Hertz(48_000_000); pub(crate) const PLL_IN: RangeInclusive = Hertz(1_000_000)..=Hertz(24_000_000); pub(crate) const PLL_OUT: RangeInclusive = Hertz(16_000_000)..=Hertz(48_000_000); }