//! Pulse Width Modulation (PWM) driver. #![macro_use] use core::sync::atomic::{compiler_fence, Ordering}; use embassy_hal_internal::{into_ref, PeripheralRef}; use crate::gpio::{convert_drive, AnyPin, OutputDrive, Pin as GpioPin, PselBits, SealedPin as _, DISCONNECTED}; use crate::pac::gpio::vals as gpiovals; use crate::pac::pwm::vals; use crate::ppi::{Event, Task}; use crate::util::slice_in_ram_or; use crate::{interrupt, pac, Peripheral}; /// SimplePwm is the traditional pwm interface you're probably used to, allowing /// to simply set a duty cycle across up to four channels. pub struct SimplePwm<'d, T: Instance> { _peri: PeripheralRef<'d, T>, duty: [u16; 4], ch0: Option>, ch1: Option>, ch2: Option>, ch3: Option>, } /// SequencePwm allows you to offload the updating of a sequence of duty cycles /// to up to four channels, as well as repeat that sequence n times. pub struct SequencePwm<'d, T: Instance> { _peri: PeripheralRef<'d, T>, ch0: Option>, ch1: Option>, ch2: Option>, ch3: Option>, } /// PWM error #[derive(Debug, Clone, Copy, PartialEq, Eq)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] #[non_exhaustive] pub enum Error { /// Max Sequence size is 32767 SequenceTooLong, /// Min Sequence count is 1 SequenceTimesAtLeastOne, /// EasyDMA can only read from data memory, read only buffers in flash will fail. BufferNotInRAM, } const MAX_SEQUENCE_LEN: usize = 32767; /// The used pwm clock frequency pub const PWM_CLK_HZ: u32 = 16_000_000; impl<'d, T: Instance> SequencePwm<'d, T> { /// Create a new 1-channel PWM #[allow(unused_unsafe)] pub fn new_1ch( pwm: impl Peripheral

+ 'd, ch0: impl Peripheral

+ 'd, config: Config, ) -> Result { into_ref!(ch0); Self::new_inner(pwm, Some(ch0.map_into()), None, None, None, config) } /// Create a new 2-channel PWM #[allow(unused_unsafe)] pub fn new_2ch( pwm: impl Peripheral

+ 'd, ch0: impl Peripheral

+ 'd, ch1: impl Peripheral

+ 'd, config: Config, ) -> Result { into_ref!(ch0, ch1); Self::new_inner(pwm, Some(ch0.map_into()), Some(ch1.map_into()), None, None, config) } /// Create a new 3-channel PWM #[allow(unused_unsafe)] pub fn new_3ch( pwm: impl Peripheral

+ 'd, ch0: impl Peripheral

+ 'd, ch1: impl Peripheral

+ 'd, ch2: impl Peripheral

+ 'd, config: Config, ) -> Result { into_ref!(ch0, ch1, ch2); Self::new_inner( pwm, Some(ch0.map_into()), Some(ch1.map_into()), Some(ch2.map_into()), None, config, ) } /// Create a new 4-channel PWM #[allow(unused_unsafe)] pub fn new_4ch( pwm: impl Peripheral

+ 'd, ch0: impl Peripheral

+ 'd, ch1: impl Peripheral

+ 'd, ch2: impl Peripheral

+ 'd, ch3: impl Peripheral

+ 'd, config: Config, ) -> Result { into_ref!(ch0, ch1, ch2, ch3); Self::new_inner( pwm, Some(ch0.map_into()), Some(ch1.map_into()), Some(ch2.map_into()), Some(ch3.map_into()), config, ) } fn new_inner( _pwm: impl Peripheral

+ 'd, ch0: Option>, ch1: Option>, ch2: Option>, ch3: Option>, config: Config, ) -> Result { into_ref!(_pwm); let r = T::regs(); if let Some(pin) = &ch0 { pin.set_low(); pin.conf().write(|w| { w.set_dir(gpiovals::Dir::OUTPUT); w.set_input(gpiovals::Input::DISCONNECT); convert_drive(w, config.ch0_drive); }); } if let Some(pin) = &ch1 { pin.set_low(); pin.conf().write(|w| { w.set_dir(gpiovals::Dir::OUTPUT); w.set_input(gpiovals::Input::DISCONNECT); convert_drive(w, config.ch1_drive); }); } if let Some(pin) = &ch2 { pin.set_low(); pin.conf().write(|w| { w.set_dir(gpiovals::Dir::OUTPUT); w.set_input(gpiovals::Input::DISCONNECT); convert_drive(w, config.ch2_drive); }); } if let Some(pin) = &ch3 { pin.set_low(); pin.conf().write(|w| { w.set_dir(gpiovals::Dir::OUTPUT); w.set_input(gpiovals::Input::DISCONNECT); convert_drive(w, config.ch3_drive); }); } r.psel().out(0).write_value(ch0.psel_bits()); r.psel().out(1).write_value(ch1.psel_bits()); r.psel().out(2).write_value(ch2.psel_bits()); r.psel().out(3).write_value(ch3.psel_bits()); // Disable all interrupts r.intenclr().write(|w| w.0 = 0xFFFF_FFFF); r.shorts().write(|_| ()); r.events_stopped().write_value(0); r.events_loopsdone().write_value(0); r.events_seqend(0).write_value(0); r.events_seqend(1).write_value(0); r.events_pwmperiodend().write_value(0); r.events_seqstarted(0).write_value(0); r.events_seqstarted(1).write_value(0); r.decoder().write(|w| { w.set_load(vals::Load::from_bits(config.sequence_load as u8)); w.set_mode(vals::Mode::REFRESH_COUNT); }); r.mode().write(|w| match config.counter_mode { CounterMode::UpAndDown => w.set_updown(vals::Updown::UP_AND_DOWN), CounterMode::Up => w.set_updown(vals::Updown::UP), }); r.prescaler() .write(|w| w.set_prescaler(vals::Prescaler::from_bits(config.prescaler as u8))); r.countertop().write(|w| w.set_countertop(config.max_duty)); Ok(Self { _peri: _pwm, ch0, ch1, ch2, ch3, }) } /// Returns reference to `Stopped` event endpoint for PPI. #[inline(always)] pub fn event_stopped(&self) -> Event<'d> { let r = T::regs(); Event::from_reg(r.events_stopped()) } /// Returns reference to `LoopsDone` event endpoint for PPI. #[inline(always)] pub fn event_loops_done(&self) -> Event<'d> { let r = T::regs(); Event::from_reg(r.events_loopsdone()) } /// Returns reference to `PwmPeriodEnd` event endpoint for PPI. #[inline(always)] pub fn event_pwm_period_end(&self) -> Event<'d> { let r = T::regs(); Event::from_reg(r.events_pwmperiodend()) } /// Returns reference to `Seq0 End` event endpoint for PPI. #[inline(always)] pub fn event_seq_end(&self) -> Event<'d> { let r = T::regs(); Event::from_reg(r.events_seqend(0)) } /// Returns reference to `Seq1 End` event endpoint for PPI. #[inline(always)] pub fn event_seq1_end(&self) -> Event<'d> { let r = T::regs(); Event::from_reg(r.events_seqend(1)) } /// Returns reference to `Seq0 Started` event endpoint for PPI. #[inline(always)] pub fn event_seq0_started(&self) -> Event<'d> { let r = T::regs(); Event::from_reg(r.events_seqstarted(0)) } /// Returns reference to `Seq1 Started` event endpoint for PPI. #[inline(always)] pub fn event_seq1_started(&self) -> Event<'d> { let r = T::regs(); Event::from_reg(r.events_seqstarted(1)) } /// Returns reference to `Seq0 Start` task endpoint for PPI. /// # Safety /// /// Interacting with the sequence while it runs puts it in an unknown state #[inline(always)] pub unsafe fn task_start_seq0(&self) -> Task<'d> { let r = T::regs(); Task::from_reg(r.tasks_seqstart(0)) } /// Returns reference to `Seq1 Started` task endpoint for PPI. /// # Safety /// /// Interacting with the sequence while it runs puts it in an unknown state #[inline(always)] pub unsafe fn task_start_seq1(&self) -> Task<'d> { let r = T::regs(); Task::from_reg(r.tasks_seqstart(1)) } /// Returns reference to `NextStep` task endpoint for PPI. /// # Safety /// /// Interacting with the sequence while it runs puts it in an unknown state #[inline(always)] pub unsafe fn task_next_step(&self) -> Task<'d> { let r = T::regs(); Task::from_reg(r.tasks_nextstep()) } /// Returns reference to `Stop` task endpoint for PPI. /// # Safety /// /// Interacting with the sequence while it runs puts it in an unknown state #[inline(always)] pub unsafe fn task_stop(&self) -> Task<'d> { let r = T::regs(); Task::from_reg(r.tasks_stop()) } } impl<'a, T: Instance> Drop for SequencePwm<'a, T> { fn drop(&mut self) { let r = T::regs(); if let Some(pin) = &self.ch0 { pin.set_low(); pin.conf().write(|_| ()); r.psel().out(0).write_value(DISCONNECTED); } if let Some(pin) = &self.ch1 { pin.set_low(); pin.conf().write(|_| ()); r.psel().out(1).write_value(DISCONNECTED); } if let Some(pin) = &self.ch2 { pin.set_low(); pin.conf().write(|_| ()); r.psel().out(2).write_value(DISCONNECTED); } if let Some(pin) = &self.ch3 { pin.set_low(); pin.conf().write(|_| ()); r.psel().out(3).write_value(DISCONNECTED); } } } /// Configuration for the PWM as a whole. #[non_exhaustive] pub struct Config { /// Selects up mode or up-and-down mode for the counter pub counter_mode: CounterMode, /// Top value to be compared against buffer values pub max_duty: u16, /// Configuration for PWM_CLK pub prescaler: Prescaler, /// How a sequence is read from RAM and is spread to the compare register pub sequence_load: SequenceLoad, /// Drive strength for the channel 0 line. pub ch0_drive: OutputDrive, /// Drive strength for the channel 1 line. pub ch1_drive: OutputDrive, /// Drive strength for the channel 2 line. pub ch2_drive: OutputDrive, /// Drive strength for the channel 3 line. pub ch3_drive: OutputDrive, } impl Default for Config { fn default() -> Config { Config { counter_mode: CounterMode::Up, max_duty: 1000, prescaler: Prescaler::Div16, sequence_load: SequenceLoad::Common, ch0_drive: OutputDrive::Standard, ch1_drive: OutputDrive::Standard, ch2_drive: OutputDrive::Standard, ch3_drive: OutputDrive::Standard, } } } /// Configuration per sequence #[non_exhaustive] #[derive(Clone)] pub struct SequenceConfig { /// Number of PWM periods to delay between each sequence sample pub refresh: u32, /// Number of PWM periods after the sequence ends before starting the next sequence pub end_delay: u32, } impl Default for SequenceConfig { fn default() -> SequenceConfig { SequenceConfig { refresh: 0, end_delay: 0, } } } /// A composition of a sequence buffer and its configuration. #[non_exhaustive] pub struct Sequence<'s> { /// The words comprising the sequence. Must not exceed 32767 words. pub words: &'s [u16], /// Configuration associated with the sequence. pub config: SequenceConfig, } impl<'s> Sequence<'s> { /// Create a new `Sequence` pub fn new(words: &'s [u16], config: SequenceConfig) -> Self { Self { words, config } } } /// A single sequence that can be started and stopped. /// Takes one sequence along with its configuration. #[non_exhaustive] pub struct SingleSequencer<'d, 's, T: Instance> { sequencer: Sequencer<'d, 's, T>, } impl<'d, 's, T: Instance> SingleSequencer<'d, 's, T> { /// Create a new sequencer pub fn new(pwm: &'s mut SequencePwm<'d, T>, words: &'s [u16], config: SequenceConfig) -> Self { Self { sequencer: Sequencer::new(pwm, Sequence::new(words, config), None), } } /// Start or restart playback. #[inline(always)] pub fn start(&self, times: SingleSequenceMode) -> Result<(), Error> { let (start_seq, times) = match times { SingleSequenceMode::Times(n) if n == 1 => (StartSequence::One, SequenceMode::Loop(1)), SingleSequenceMode::Times(n) if n & 1 == 1 => (StartSequence::One, SequenceMode::Loop((n / 2) + 1)), SingleSequenceMode::Times(n) => (StartSequence::Zero, SequenceMode::Loop(n / 2)), SingleSequenceMode::Infinite => (StartSequence::Zero, SequenceMode::Infinite), }; self.sequencer.start(start_seq, times) } /// Stop playback. Disables the peripheral. Does NOT clear the last duty /// cycle from the pin. Returns any sequences previously provided to /// `start` so that they may be further mutated. #[inline(always)] pub fn stop(&self) { self.sequencer.stop(); } } /// A composition of sequences that can be started and stopped. /// Takes at least one sequence along with its configuration. /// Optionally takes a second sequence and its configuration. /// In the case where no second sequence is provided then the first sequence /// is used. #[non_exhaustive] pub struct Sequencer<'d, 's, T: Instance> { _pwm: &'s mut SequencePwm<'d, T>, sequence0: Sequence<'s>, sequence1: Option>, } impl<'d, 's, T: Instance> Sequencer<'d, 's, T> { /// Create a new double sequence. In the absence of sequence 1, sequence 0 /// will be used twice in the one loop. pub fn new(pwm: &'s mut SequencePwm<'d, T>, sequence0: Sequence<'s>, sequence1: Option>) -> Self { Sequencer { _pwm: pwm, sequence0, sequence1, } } /// Start or restart playback. The sequence mode applies to both sequences combined as one. #[inline(always)] pub fn start(&self, start_seq: StartSequence, times: SequenceMode) -> Result<(), Error> { let sequence0 = &self.sequence0; let alt_sequence = self.sequence1.as_ref().unwrap_or(&self.sequence0); slice_in_ram_or(sequence0.words, Error::BufferNotInRAM)?; slice_in_ram_or(alt_sequence.words, Error::BufferNotInRAM)?; if sequence0.words.len() > MAX_SEQUENCE_LEN || alt_sequence.words.len() > MAX_SEQUENCE_LEN { return Err(Error::SequenceTooLong); } if let SequenceMode::Loop(0) = times { return Err(Error::SequenceTimesAtLeastOne); } self.stop(); let r = T::regs(); r.seq(0).refresh().write(|w| w.0 = sequence0.config.refresh); r.seq(0).enddelay().write(|w| w.0 = sequence0.config.end_delay); r.seq(0).ptr().write_value(sequence0.words.as_ptr() as u32); r.seq(0).cnt().write(|w| w.0 = sequence0.words.len() as u32); r.seq(1).refresh().write(|w| w.0 = alt_sequence.config.refresh); r.seq(1).enddelay().write(|w| w.0 = alt_sequence.config.end_delay); r.seq(1).ptr().write_value(alt_sequence.words.as_ptr() as u32); r.seq(1).cnt().write(|w| w.0 = alt_sequence.words.len() as u32); r.enable().write(|w| w.set_enable(true)); // defensive before seqstart compiler_fence(Ordering::SeqCst); let seqstart_index = if start_seq == StartSequence::One { 1 } else { 0 }; match times { // just the one time, no loop count SequenceMode::Loop(_) => { r.loop_().write(|w| w.set_cnt(vals::LoopCnt::DISABLED)); } // to play infinitely, repeat the sequence one time, then have loops done self trigger seq0 again SequenceMode::Infinite => { r.loop_().write(|w| w.set_cnt(vals::LoopCnt::from_bits(1))); r.shorts().write(|w| w.set_loopsdone_seqstart0(true)); } } r.tasks_seqstart(seqstart_index).write_value(1); Ok(()) } /// Stop playback. Disables the peripheral. Does NOT clear the last duty /// cycle from the pin. Returns any sequences previously provided to /// `start` so that they may be further mutated. #[inline(always)] pub fn stop(&self) { let r = T::regs(); r.shorts().write(|_| ()); compiler_fence(Ordering::SeqCst); r.tasks_stop().write_value(1); r.enable().write(|w| w.set_enable(false)); } } impl<'d, 's, T: Instance> Drop for Sequencer<'d, 's, T> { fn drop(&mut self) { self.stop(); } } /// How many times to run a single sequence #[derive(Debug, Eq, PartialEq, Clone, Copy)] pub enum SingleSequenceMode { /// Run a single sequence n Times total. Times(u16), /// Repeat until `stop` is called. Infinite, } /// Which sequence to start a loop with #[derive(Debug, Eq, PartialEq, Clone, Copy)] pub enum StartSequence { /// Start with Sequence 0 Zero, /// Start with Sequence 1 One, } /// How many loops to run two sequences #[derive(Debug, Eq, PartialEq, Clone, Copy)] pub enum SequenceMode { /// Run two sequences n loops i.e. (n * (seq0 + seq1.unwrap_or(seq0))) Loop(u16), /// Repeat until `stop` is called. Infinite, } /// PWM Base clock is system clock (16MHz) divided by prescaler #[derive(Debug, Eq, PartialEq, Clone, Copy)] pub enum Prescaler { /// Divide by 1 Div1, /// Divide by 2 Div2, /// Divide by 4 Div4, /// Divide by 8 Div8, /// Divide by 16 Div16, /// Divide by 32 Div32, /// Divide by 64 Div64, /// Divide by 128 Div128, } /// How the sequence values are distributed across the channels #[derive(Debug, Eq, PartialEq, Clone, Copy)] pub enum SequenceLoad { /// Provided sequence will be used across all channels Common, /// Provided sequence contains grouped values for each channel ex: /// [ch0_0_and_ch1_0, ch2_0_and_ch3_0, ... ch0_n_and_ch1_n, ch2_n_and_ch3_n] Grouped, /// Provided sequence contains individual values for each channel ex: /// [ch0_0, ch1_0, ch2_0, ch3_0... ch0_n, ch1_n, ch2_n, ch3_n] Individual, /// Similar to Individual mode, but only three channels are used. The fourth /// value is loaded into the pulse generator counter as its top value. Waveform, } /// Selects up mode or up-and-down mode for the counter #[derive(Debug, Eq, PartialEq, Clone, Copy)] pub enum CounterMode { /// Up counter (edge-aligned PWM duty cycle) Up, /// Up and down counter (center-aligned PWM duty cycle) UpAndDown, } impl<'d, T: Instance> SimplePwm<'d, T> { /// Create a new 1-channel PWM #[allow(unused_unsafe)] pub fn new_1ch(pwm: impl Peripheral

+ 'd, ch0: impl Peripheral

+ 'd) -> Self { unsafe { into_ref!(ch0); Self::new_inner(pwm, Some(ch0.map_into()), None, None, None) } } /// Create a new 2-channel PWM #[allow(unused_unsafe)] pub fn new_2ch( pwm: impl Peripheral

+ 'd, ch0: impl Peripheral

+ 'd, ch1: impl Peripheral

+ 'd, ) -> Self { into_ref!(ch0, ch1); Self::new_inner(pwm, Some(ch0.map_into()), Some(ch1.map_into()), None, None) } /// Create a new 3-channel PWM #[allow(unused_unsafe)] pub fn new_3ch( pwm: impl Peripheral

+ 'd, ch0: impl Peripheral

+ 'd, ch1: impl Peripheral

+ 'd, ch2: impl Peripheral

+ 'd, ) -> Self { unsafe { into_ref!(ch0, ch1, ch2); Self::new_inner( pwm, Some(ch0.map_into()), Some(ch1.map_into()), Some(ch2.map_into()), None, ) } } /// Create a new 4-channel PWM #[allow(unused_unsafe)] pub fn new_4ch( pwm: impl Peripheral

+ 'd, ch0: impl Peripheral

+ 'd, ch1: impl Peripheral

+ 'd, ch2: impl Peripheral

+ 'd, ch3: impl Peripheral

+ 'd, ) -> Self { unsafe { into_ref!(ch0, ch1, ch2, ch3); Self::new_inner( pwm, Some(ch0.map_into()), Some(ch1.map_into()), Some(ch2.map_into()), Some(ch3.map_into()), ) } } fn new_inner( _pwm: impl Peripheral

+ 'd, ch0: Option>, ch1: Option>, ch2: Option>, ch3: Option>, ) -> Self { into_ref!(_pwm); let r = T::regs(); for (i, ch) in [&ch0, &ch1, &ch2, &ch3].into_iter().enumerate() { if let Some(pin) = ch { pin.set_low(); pin.conf().write(|w| { w.set_dir(gpiovals::Dir::OUTPUT); w.set_input(gpiovals::Input::DISCONNECT); w.set_drive(gpiovals::Drive::S0S1); }); } r.psel().out(i).write_value(ch.psel_bits()); } let pwm = Self { _peri: _pwm, ch0, ch1, ch2, ch3, duty: [0; 4], }; // Disable all interrupts r.intenclr().write(|w| w.0 = 0xFFFF_FFFF); r.shorts().write(|_| ()); // Enable r.enable().write(|w| w.set_enable(true)); r.seq(0).ptr().write_value((pwm.duty).as_ptr() as u32); r.seq(0).cnt().write(|w| w.0 = 4); r.seq(0).refresh().write(|w| w.0 = 0); r.seq(0).enddelay().write(|w| w.0 = 0); r.decoder().write(|w| { w.set_load(vals::Load::INDIVIDUAL); w.set_mode(vals::Mode::REFRESH_COUNT); }); r.mode().write(|w| w.set_updown(vals::Updown::UP)); r.prescaler().write(|w| w.set_prescaler(vals::Prescaler::DIV_16)); r.countertop().write(|w| w.set_countertop(1000)); r.loop_().write(|w| w.set_cnt(vals::LoopCnt::DISABLED)); pwm } /// Returns the enable state of the pwm counter #[inline(always)] pub fn is_enabled(&self) -> bool { let r = T::regs(); r.enable().read().enable() } /// Enables the PWM generator. #[inline(always)] pub fn enable(&self) { let r = T::regs(); r.enable().write(|w| w.set_enable(true)); } /// Disables the PWM generator. Does NOT clear the last duty cycle from the pin. #[inline(always)] pub fn disable(&self) { let r = T::regs(); r.enable().write(|w| w.set_enable(false)); } /// Returns the current duty of the channel pub fn duty(&self, channel: usize) -> u16 { self.duty[channel] } /// Sets duty cycle (15 bit) for a PWM channel. pub fn set_duty(&mut self, channel: usize, duty: u16) { let r = T::regs(); self.duty[channel] = duty & 0x7FFF; // reload ptr in case self was moved r.seq(0).ptr().write_value((self.duty).as_ptr() as u32); // defensive before seqstart compiler_fence(Ordering::SeqCst); r.events_seqend(0).write_value(0); // tasks_seqstart() doesn't exist in all svds so write its bit instead r.tasks_seqstart(0).write_value(1); // defensive wait until waveform is loaded after seqstart so set_duty // can't be called again while dma is still reading if self.is_enabled() { while r.events_seqend(0).read() == 0 {} } } /// Sets the PWM clock prescaler. #[inline(always)] pub fn set_prescaler(&self, div: Prescaler) { T::regs() .prescaler() .write(|w| w.set_prescaler(vals::Prescaler::from_bits(div as u8))); } /// Gets the PWM clock prescaler. #[inline(always)] pub fn prescaler(&self) -> Prescaler { match T::regs().prescaler().read().prescaler().to_bits() { 0 => Prescaler::Div1, 1 => Prescaler::Div2, 2 => Prescaler::Div4, 3 => Prescaler::Div8, 4 => Prescaler::Div16, 5 => Prescaler::Div32, 6 => Prescaler::Div64, 7 => Prescaler::Div128, _ => unreachable!(), } } /// Sets the maximum duty cycle value. #[inline(always)] pub fn set_max_duty(&self, duty: u16) { T::regs().countertop().write(|w| w.set_countertop(duty.min(32767u16))); } /// Returns the maximum duty cycle value. #[inline(always)] pub fn max_duty(&self) -> u16 { T::regs().countertop().read().countertop() } /// Sets the PWM output frequency. #[inline(always)] pub fn set_period(&self, freq: u32) { let clk = PWM_CLK_HZ >> (self.prescaler() as u8); let duty = clk / freq; self.set_max_duty(duty.min(32767) as u16); } /// Returns the PWM output frequency. #[inline(always)] pub fn period(&self) -> u32 { let clk = PWM_CLK_HZ >> (self.prescaler() as u8); let max_duty = self.max_duty() as u32; clk / max_duty } /// Sets the PWM-Channel0 output drive strength #[inline(always)] pub fn set_ch0_drive(&self, drive: OutputDrive) { if let Some(pin) = &self.ch0 { pin.conf().modify(|w| convert_drive(w, drive)); } } /// Sets the PWM-Channel1 output drive strength #[inline(always)] pub fn set_ch1_drive(&self, drive: OutputDrive) { if let Some(pin) = &self.ch1 { pin.conf().modify(|w| convert_drive(w, drive)); } } /// Sets the PWM-Channel2 output drive strength #[inline(always)] pub fn set_ch2_drive(&self, drive: OutputDrive) { if let Some(pin) = &self.ch2 { pin.conf().modify(|w| convert_drive(w, drive)); } } /// Sets the PWM-Channel3 output drive strength #[inline(always)] pub fn set_ch3_drive(&self, drive: OutputDrive) { if let Some(pin) = &self.ch3 { pin.conf().modify(|w| convert_drive(w, drive)); } } } impl<'a, T: Instance> Drop for SimplePwm<'a, T> { fn drop(&mut self) { let r = T::regs(); self.disable(); if let Some(pin) = &self.ch0 { pin.set_low(); pin.conf().write(|_| ()); r.psel().out(0).write_value(DISCONNECTED); } if let Some(pin) = &self.ch1 { pin.set_low(); pin.conf().write(|_| ()); r.psel().out(1).write_value(DISCONNECTED); } if let Some(pin) = &self.ch2 { pin.set_low(); pin.conf().write(|_| ()); r.psel().out(2).write_value(DISCONNECTED); } if let Some(pin) = &self.ch3 { pin.set_low(); pin.conf().write(|_| ()); r.psel().out(3).write_value(DISCONNECTED); } } } pub(crate) trait SealedInstance { fn regs() -> pac::pwm::Pwm; } /// PWM peripheral instance. #[allow(private_bounds)] pub trait Instance: Peripheral

+ SealedInstance + 'static { /// Interrupt for this peripheral. type Interrupt: interrupt::typelevel::Interrupt; } macro_rules! impl_pwm { ($type:ident, $pac_type:ident, $irq:ident) => { impl crate::pwm::SealedInstance for peripherals::$type { fn regs() -> pac::pwm::Pwm { pac::$pac_type } } impl crate::pwm::Instance for peripherals::$type { type Interrupt = crate::interrupt::typelevel::$irq; } }; }