#![no_main] #![no_std] //! For Nucleo STM32H7S3L8 MB1737, has MX25UW25645GXDI00 //! //! TODO: Currently this only uses single SPI, pending flash chip documentation for octo SPI. use defmt::info; use embassy_executor::Spawner; use embassy_stm32::gpio::{Level, Output, Speed}; use embassy_stm32::mode::Blocking; use embassy_stm32::time::Hertz; use embassy_stm32::xspi::{ AddressSize, ChipSelectHighTime, DummyCycles, FIFOThresholdLevel, Instance, MemorySize, MemoryType, TransferConfig, WrapSize, Xspi, XspiWidth, }; use embassy_stm32::Config; use embassy_time::Timer; use {defmt_rtt as _, panic_probe as _}; #[embassy_executor::main] async fn main(_spawner: Spawner) { // RCC config let mut config = Config::default(); { use embassy_stm32::rcc::*; config.rcc.hse = Some(Hse { freq: Hertz(24_000_000), mode: HseMode::Oscillator, }); config.rcc.pll1 = Some(Pll { source: PllSource::HSE, prediv: PllPreDiv::DIV3, mul: PllMul::MUL150, divp: Some(PllDiv::DIV2), divq: None, divr: None, }); config.rcc.sys = Sysclk::PLL1_P; // 600 Mhz config.rcc.ahb_pre = AHBPrescaler::DIV2; // 300 Mhz config.rcc.apb1_pre = APBPrescaler::DIV2; // 150 Mhz config.rcc.apb2_pre = APBPrescaler::DIV2; // 150 Mhz config.rcc.apb4_pre = APBPrescaler::DIV2; // 150 Mhz config.rcc.apb5_pre = APBPrescaler::DIV2; // 150 Mhz config.rcc.voltage_scale = VoltageScale::HIGH; } // Initialize peripherals let p = embassy_stm32::init(config); let spi_config = embassy_stm32::xspi::Config { fifo_threshold: FIFOThresholdLevel::_4Bytes, memory_type: MemoryType::Macronix, delay_hold_quarter_cycle: true, // memory_type: MemoryType::Micron, // delay_hold_quarter_cycle: false, device_size: MemorySize::_32MiB, chip_select_high_time: ChipSelectHighTime::_2Cycle, free_running_clock: false, clock_mode: false, wrap_size: WrapSize::None, // 300mhz / (4+1) = 60mhz. Unsure the limit, need to find a MX25UW25645GXDI00 datasheet. clock_prescaler: 3, sample_shifting: false, chip_select_boundary: 0, max_transfer: 0, refresh: 0, }; let mut cor = cortex_m::Peripherals::take().unwrap(); // Not necessary, but recommended if using XIP cor.SCB.enable_icache(); cor.SCB.enable_dcache(&mut cor.CPUID); let xspi = embassy_stm32::xspi::Xspi::new_blocking_xspi( p.XSPI2, p.PN6, p.PN2, p.PN3, p.PN4, p.PN5, p.PN8, p.PN9, p.PN10, p.PN11, p.PN1, spi_config, ); let mut flash = FlashMemory::new(xspi).await; let flash_id = flash.read_id(); info!("FLASH ID: {=[u8]:x}", flash_id); let mut wr_buf = [0u8; 8]; for i in 0..8 { wr_buf[i] = 0x90 + i as u8; } let mut rd_buf = [0u8; 8]; flash.erase_sector(0).await; flash.write_memory(0, &wr_buf, true).await; flash.read_memory(0, &mut rd_buf, true); info!("WRITE BUF: {=[u8]:#X}", wr_buf); info!("READ BUF: {=[u8]:#X}", rd_buf); flash.enable_mm().await; info!("Enabled memory mapped mode"); let first_u32 = unsafe { *(0x70000000 as *const u32) }; assert_eq!(first_u32, 0x93929190); info!("first_u32 {:08x}", first_u32); let second_u32 = unsafe { *(0x70000004 as *const u32) }; assert_eq!(second_u32, 0x97969594); info!("second_u32 {:08x}", first_u32); flash.disable_mm().await; info!("Disabled memory mapped mode"); info!("DONE"); // Output pin PE3 let mut led = Output::new(p.PE3, Level::Low, Speed::Low); loop { led.toggle(); Timer::after_millis(1000).await; } } const MEMORY_PAGE_SIZE: usize = 8; const CMD_READ: u8 = 0x0B; const _CMD_QUAD_READ: u8 = 0x6B; const CMD_WRITE_PG: u8 = 0x02; const _CMD_QUAD_WRITE_PG: u8 = 0x32; const CMD_READ_ID: u8 = 0x9F; const CMD_READ_ID_OCTO: u16 = 0x9F60; const CMD_ENABLE_RESET: u8 = 0x66; const CMD_RESET: u8 = 0x99; const CMD_WRITE_ENABLE: u8 = 0x06; const CMD_CHIP_ERASE: u8 = 0xC7; const CMD_SECTOR_ERASE: u8 = 0x20; const CMD_BLOCK_ERASE_32K: u8 = 0x52; const CMD_BLOCK_ERASE_64K: u8 = 0xD8; const CMD_READ_SR: u8 = 0x05; const CMD_READ_CR: u8 = 0x35; const CMD_WRITE_SR: u8 = 0x01; const CMD_WRITE_CR: u8 = 0x31; /// Implementation of access to flash chip. /// /// Chip commands are hardcoded as it depends on used chip. /// This targets a MX25UW25645GXDI00. pub struct FlashMemory { xspi: Xspi<'static, I, Blocking>, } impl FlashMemory { pub async fn new(xspi: Xspi<'static, I, Blocking>) -> Self { let mut memory = Self { xspi }; memory.reset_memory().await; memory.enable_octo(); memory } async fn qpi_mode(&mut self) { // Enter qpi mode self.exec_command(0x38).await; // Set read param let transaction = TransferConfig { iwidth: XspiWidth::QUAD, dwidth: XspiWidth::QUAD, instruction: Some(0xC0), ..Default::default() }; self.enable_write().await; self.xspi.blocking_write(&[0x30_u8], transaction).unwrap(); self.wait_write_finish(); } pub async fn disable_mm(&mut self) { self.xspi.disable_memory_mapped_mode(); } pub async fn enable_mm(&mut self) { self.qpi_mode().await; let read_config = TransferConfig { iwidth: XspiWidth::SING, isize: AddressSize::_8bit, adwidth: XspiWidth::SING, adsize: AddressSize::_24bit, dwidth: XspiWidth::SING, instruction: Some(CMD_READ as u32), dummy: DummyCycles::_8, ..Default::default() }; let write_config = TransferConfig { iwidth: XspiWidth::SING, isize: AddressSize::_8bit, adwidth: XspiWidth::SING, adsize: AddressSize::_24bit, dwidth: XspiWidth::SING, instruction: Some(CMD_WRITE_PG as u32), dummy: DummyCycles::_0, ..Default::default() }; self.xspi.enable_memory_mapped_mode(read_config, write_config).unwrap(); } fn enable_octo(&mut self) { let cr = self.read_cr(); // info!("Read cr: {:x}", cr); self.write_cr(cr | 0x02); // info!("Read cr after writing: {:x}", cr); } pub fn disable_octo(&mut self) { let cr = self.read_cr(); self.write_cr(cr & (!(0x02))); } async fn exec_command_4(&mut self, cmd: u8) { let transaction = TransferConfig { iwidth: XspiWidth::QUAD, adwidth: XspiWidth::NONE, // adsize: AddressSize::_24bit, dwidth: XspiWidth::NONE, instruction: Some(cmd as u32), address: None, dummy: DummyCycles::_0, ..Default::default() }; self.xspi.blocking_command(&transaction).unwrap(); } async fn exec_command(&mut self, cmd: u8) { let transaction = TransferConfig { iwidth: XspiWidth::SING, adwidth: XspiWidth::NONE, // adsize: AddressSize::_24bit, dwidth: XspiWidth::NONE, instruction: Some(cmd as u32), address: None, dummy: DummyCycles::_0, ..Default::default() }; // info!("Excuting command: {:x}", transaction.instruction); self.xspi.blocking_command(&transaction).unwrap(); } pub async fn reset_memory(&mut self) { self.exec_command_4(CMD_ENABLE_RESET).await; self.exec_command_4(CMD_RESET).await; self.exec_command(CMD_ENABLE_RESET).await; self.exec_command(CMD_RESET).await; self.wait_write_finish(); } pub async fn enable_write(&mut self) { self.exec_command(CMD_WRITE_ENABLE).await; } pub fn read_id(&mut self) -> [u8; 3] { let mut buffer = [0; 3]; let transaction: TransferConfig = TransferConfig { iwidth: XspiWidth::SING, isize: AddressSize::_8bit, adwidth: XspiWidth::NONE, // adsize: AddressSize::_24bit, dwidth: XspiWidth::SING, instruction: Some(CMD_READ_ID as u32), ..Default::default() }; // info!("Reading id: 0x{:X}", transaction.instruction); self.xspi.blocking_read(&mut buffer, transaction).unwrap(); buffer } pub fn read_id_8(&mut self) -> [u8; 3] { let mut buffer = [0; 3]; let transaction: TransferConfig = TransferConfig { iwidth: XspiWidth::OCTO, isize: AddressSize::_16bit, adwidth: XspiWidth::OCTO, address: Some(0), adsize: AddressSize::_32bit, dwidth: XspiWidth::OCTO, instruction: Some(CMD_READ_ID_OCTO as u32), dummy: DummyCycles::_4, ..Default::default() }; info!("Reading id: {:#X}", transaction.instruction); self.xspi.blocking_read(&mut buffer, transaction).unwrap(); buffer } pub fn read_memory(&mut self, addr: u32, buffer: &mut [u8], use_dma: bool) { let transaction = TransferConfig { iwidth: XspiWidth::SING, adwidth: XspiWidth::SING, adsize: AddressSize::_24bit, dwidth: XspiWidth::SING, instruction: Some(CMD_READ as u32), dummy: DummyCycles::_8, // dwidth: XspiWidth::QUAD, // instruction: Some(CMD_QUAD_READ as u32), // dummy: DummyCycles::_8, address: Some(addr), ..Default::default() }; if use_dma { self.xspi.blocking_read(buffer, transaction).unwrap(); } else { self.xspi.blocking_read(buffer, transaction).unwrap(); } } fn wait_write_finish(&mut self) { while (self.read_sr() & 0x01) != 0 {} } async fn perform_erase(&mut self, addr: u32, cmd: u8) { let transaction = TransferConfig { iwidth: XspiWidth::SING, adwidth: XspiWidth::SING, adsize: AddressSize::_24bit, dwidth: XspiWidth::NONE, instruction: Some(cmd as u32), address: Some(addr), dummy: DummyCycles::_0, ..Default::default() }; self.enable_write().await; self.xspi.blocking_command(&transaction).unwrap(); self.wait_write_finish(); } pub async fn erase_sector(&mut self, addr: u32) { self.perform_erase(addr, CMD_SECTOR_ERASE).await; } pub async fn erase_block_32k(&mut self, addr: u32) { self.perform_erase(addr, CMD_BLOCK_ERASE_32K).await; } pub async fn erase_block_64k(&mut self, addr: u32) { self.perform_erase(addr, CMD_BLOCK_ERASE_64K).await; } pub async fn erase_chip(&mut self) { self.exec_command(CMD_CHIP_ERASE).await; } async fn write_page(&mut self, addr: u32, buffer: &[u8], len: usize, use_dma: bool) { assert!( (len as u32 + (addr & 0x000000ff)) <= MEMORY_PAGE_SIZE as u32, "write_page(): page write length exceeds page boundary (len = {}, addr = {:X}", len, addr ); let transaction = TransferConfig { iwidth: XspiWidth::SING, adsize: AddressSize::_24bit, adwidth: XspiWidth::SING, dwidth: XspiWidth::SING, instruction: Some(CMD_WRITE_PG as u32), // dwidth: XspiWidth::QUAD, // instruction: Some(CMD_QUAD_WRITE_PG as u32), address: Some(addr), dummy: DummyCycles::_0, ..Default::default() }; self.enable_write().await; if use_dma { self.xspi.blocking_write(buffer, transaction).unwrap(); } else { self.xspi.blocking_write(buffer, transaction).unwrap(); } self.wait_write_finish(); } pub async fn write_memory(&mut self, addr: u32, buffer: &[u8], use_dma: bool) { let mut left = buffer.len(); let mut place = addr; let mut chunk_start = 0; while left > 0 { let max_chunk_size = MEMORY_PAGE_SIZE - (place & 0x000000ff) as usize; let chunk_size = if left >= max_chunk_size { max_chunk_size } else { left }; let chunk = &buffer[chunk_start..(chunk_start + chunk_size)]; self.write_page(place, chunk, chunk_size, use_dma).await; place += chunk_size as u32; left -= chunk_size; chunk_start += chunk_size; } } fn read_register(&mut self, cmd: u8) -> u8 { let mut buffer = [0; 1]; let transaction: TransferConfig = TransferConfig { iwidth: XspiWidth::SING, isize: AddressSize::_8bit, adwidth: XspiWidth::NONE, adsize: AddressSize::_24bit, dwidth: XspiWidth::SING, instruction: Some(cmd as u32), address: None, dummy: DummyCycles::_0, ..Default::default() }; self.xspi.blocking_read(&mut buffer, transaction).unwrap(); // info!("Read w25q64 register: 0x{:x}", buffer[0]); buffer[0] } fn write_register(&mut self, cmd: u8, value: u8) { let buffer = [value; 1]; let transaction: TransferConfig = TransferConfig { iwidth: XspiWidth::SING, isize: AddressSize::_8bit, instruction: Some(cmd as u32), adsize: AddressSize::_24bit, adwidth: XspiWidth::NONE, dwidth: XspiWidth::SING, address: None, dummy: DummyCycles::_0, ..Default::default() }; self.xspi.blocking_write(&buffer, transaction).unwrap(); } pub fn read_sr(&mut self) -> u8 { self.read_register(CMD_READ_SR) } pub fn read_cr(&mut self) -> u8 { self.read_register(CMD_READ_CR) } pub fn write_sr(&mut self, value: u8) { self.write_register(CMD_WRITE_SR, value); } pub fn write_cr(&mut self, value: u8) { self.write_register(CMD_WRITE_CR, value); } }