#![no_std] #![no_main] #![allow(dead_code)] /// This example demonstrates how to use the QSPI peripheral in both indirect-mode and memory-mapped mode. /// If you want to test this example, please pay attention to flash pins and check flash device datasheet /// to make sure operations in this example are compatible with your device, especially registers I/O operations. use defmt::info; use embassy_stm32::mode; use embassy_stm32::qspi::enums::{ AddressSize, ChipSelectHighTime, DummyCycles, FIFOThresholdLevel, MemorySize, QspiWidth, }; use embassy_stm32::qspi::{self, Instance, TransferConfig}; pub struct FlashMemory { qspi: qspi::Qspi<'static, I, mode::Async>, } use embassy_executor::Spawner; use embassy_time::Timer; use {defmt_rtt as _, panic_probe as _}; const MEMORY_PAGE_SIZE: usize = 256; const CMD_READ_SR: u8 = 0x05; const CMD_READ_CR: u8 = 0x35; const CMD_QUAD_READ: u8 = 0x6B; const CMD_QUAD_WRITE_PG: u8 = 0x32; const CMD_READ_ID: u8 = 0x9F; const CMD_READ_MID: u8 = 0x90; const CMD_READ_UUID: u8 = 0x4B; const CMD_ENABLE_RESET: u8 = 0x66; const CMD_RESET: u8 = 0x99; const CMD_WRITE_ENABLE: u8 = 0x06; const CMD_SECTOR_ERASE: u8 = 0x20; const CMD_WRITE_SR: u8 = 0x01; impl FlashMemory { pub fn new(qspi: qspi::Qspi<'static, I, mode::Async>) -> Self { let mut memory = Self { qspi }; memory.reset_memory(); memory.enable_quad(); memory } fn enable_quad(&mut self) { let sr = self.read_sr_lsb(); let cr = self.read_sr_msb(); self.write_sr(sr, cr | 0x02); } fn read_register(&mut self, cmd: u8) -> u8 { let mut buffer = [0; 1]; let transaction = TransferConfig { iwidth: QspiWidth::SING, awidth: QspiWidth::NONE, dwidth: QspiWidth::SING, instruction: cmd, address: None, dummy: DummyCycles::_0, }; self.qspi.blocking_read(&mut buffer, transaction); buffer[0] } fn write_register(&mut self, cmd: u8, value: u8) { let buffer = [value; 1]; let transaction: TransferConfig = TransferConfig { iwidth: QspiWidth::SING, awidth: QspiWidth::NONE, dwidth: QspiWidth::SING, instruction: cmd, address: None, dummy: DummyCycles::_0, }; self.qspi.blocking_write(&buffer, transaction); } pub fn write_sr(&mut self, lsb: u8, msb: u8) { let buffer = [lsb, msb]; let transaction: TransferConfig = TransferConfig { iwidth: QspiWidth::SING, awidth: QspiWidth::NONE, dwidth: QspiWidth::SING, instruction: CMD_WRITE_SR, address: None, dummy: DummyCycles::_0, }; self.qspi.blocking_write(&buffer, transaction); } pub fn read_sr_lsb(&mut self) -> u8 { self.read_register(CMD_READ_SR) } pub fn read_sr_msb(&mut self) -> u8 { self.read_register(CMD_READ_CR) } pub fn reset_memory(&mut self) { self.exec_command(CMD_ENABLE_RESET); self.exec_command(CMD_RESET); self.wait_write_finish(); } fn exec_command(&mut self, cmd: u8) { let transaction = TransferConfig { iwidth: QspiWidth::SING, awidth: QspiWidth::NONE, dwidth: QspiWidth::NONE, instruction: cmd, address: None, dummy: DummyCycles::_0, }; self.qspi.blocking_command(transaction); } fn wait_write_finish(&mut self) { while (self.read_sr_lsb() & 0x01) != 0 {} } pub fn read_mid(&mut self) -> [u8; 2] { let mut buffer = [0; 2]; let transaction: TransferConfig = TransferConfig { iwidth: QspiWidth::SING, awidth: QspiWidth::SING, dwidth: QspiWidth::SING, instruction: CMD_READ_MID, address: Some(0), dummy: DummyCycles::_0, }; self.qspi.blocking_read(&mut buffer, transaction); buffer } pub fn read_uuid(&mut self) -> [u8; 16] { let mut buffer = [0; 16]; let transaction: TransferConfig = TransferConfig { iwidth: QspiWidth::SING, awidth: QspiWidth::SING, dwidth: QspiWidth::SING, instruction: CMD_READ_UUID, address: Some(0), dummy: DummyCycles::_8, }; self.qspi.blocking_read(&mut buffer, transaction); buffer } pub fn read_id(&mut self) -> [u8; 3] { let mut buffer = [0; 3]; let transaction: TransferConfig = TransferConfig { iwidth: QspiWidth::SING, awidth: QspiWidth::NONE, dwidth: QspiWidth::SING, instruction: CMD_READ_ID, address: None, dummy: DummyCycles::_0, }; self.qspi.blocking_read(&mut buffer, transaction); buffer } pub fn enable_mmap(&mut self) { let transaction: TransferConfig = TransferConfig { iwidth: QspiWidth::SING, awidth: QspiWidth::SING, dwidth: QspiWidth::QUAD, instruction: CMD_QUAD_READ, address: Some(0), dummy: DummyCycles::_8, }; self.qspi.enable_memory_map(&transaction); } fn perform_erase(&mut self, addr: u32, cmd: u8) { let transaction = TransferConfig { iwidth: QspiWidth::SING, awidth: QspiWidth::SING, dwidth: QspiWidth::NONE, instruction: cmd, address: Some(addr), dummy: DummyCycles::_0, }; self.enable_write(); self.qspi.blocking_command(transaction); self.wait_write_finish(); } pub fn enable_write(&mut self) { self.exec_command(CMD_WRITE_ENABLE); } pub fn erase_sector(&mut self, addr: u32) { self.perform_erase(addr, CMD_SECTOR_ERASE); } fn write_page(&mut self, addr: u32, buffer: &[u8], len: usize, use_dma: bool) { assert!( (len as u32 + (addr & 0x000000ff)) <= MEMORY_PAGE_SIZE as u32, "write_page(): page write length exceeds page boundary (len = {}, addr = {:X}", len, addr ); let transaction = TransferConfig { iwidth: QspiWidth::SING, awidth: QspiWidth::SING, dwidth: QspiWidth::QUAD, instruction: CMD_QUAD_WRITE_PG, address: Some(addr), dummy: DummyCycles::_0, }; self.enable_write(); if use_dma { self.qspi.blocking_write_dma(buffer, transaction); } else { self.qspi.blocking_write(buffer, transaction); } self.wait_write_finish(); } pub fn write_memory(&mut self, addr: u32, buffer: &[u8], use_dma: bool) { let mut left = buffer.len(); let mut place = addr; let mut chunk_start = 0; while left > 0 { let max_chunk_size = MEMORY_PAGE_SIZE - (place & 0x000000ff) as usize; let chunk_size = if left >= max_chunk_size { max_chunk_size } else { left }; let chunk = &buffer[chunk_start..(chunk_start + chunk_size)]; self.write_page(place, chunk, chunk_size, use_dma); place += chunk_size as u32; left -= chunk_size; chunk_start += chunk_size; } } pub fn read_memory(&mut self, addr: u32, buffer: &mut [u8], use_dma: bool) { let transaction = TransferConfig { iwidth: QspiWidth::SING, awidth: QspiWidth::SING, dwidth: QspiWidth::QUAD, instruction: CMD_QUAD_READ, address: Some(addr), dummy: DummyCycles::_8, }; if use_dma { self.qspi.blocking_read_dma(buffer, transaction); } else { self.qspi.blocking_read(buffer, transaction); } } } const MEMORY_ADDR: u32 = 0x00000000 as u32; #[embassy_executor::main] async fn main(_spawner: Spawner) { let p = embassy_stm32::init(Default::default()); let config = qspi::Config { memory_size: MemorySize::_16MiB, address_size: AddressSize::_24bit, prescaler: 200, cs_high_time: ChipSelectHighTime::_1Cycle, fifo_threshold: FIFOThresholdLevel::_16Bytes, }; let driver = qspi::Qspi::new_bank1(p.QUADSPI, p.PB1, p.PB0, p.PA7, p.PA6, p.PA3, p.PA2, p.DMA2_CH7, config); let mut flash = FlashMemory::new(driver); let mut wr_buf = [0u8; 256]; for i in 0..32 { wr_buf[i] = i as u8; } let mut rd_buf = [0u8; 32]; flash.erase_sector(MEMORY_ADDR); flash.write_memory(MEMORY_ADDR, &wr_buf, false); flash.read_memory(MEMORY_ADDR, &mut rd_buf, false); info!("data read from indirect mode: {}", rd_buf); flash.enable_mmap(); let qspi_base = unsafe { core::slice::from_raw_parts(0x9000_0000 as *const u8, 32) }; info!("data read from mmap: {}", qspi_base); loop { Timer::after_millis(1000).await; } }