//! Interface to the RP2350's One Time Programmable Memory // Credit: taken from `rp-hal` (also licensed Apache+MIT) // https://github.com/rp-rs/rp-hal/blob/main/rp235x-hal/src/rom_data.rs use crate::rom_data::otp_access; /// The ways in which we can fail to access OTP #[derive(Debug, Clone)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum Error { /// The user passed an invalid index to a function. InvalidIndex, /// The hardware refused to let us read this word, probably due to /// read or write lock set earlier in the boot process. InvalidPermissions, /// Modification is impossible based on current state; e.g. /// attempted to clear an OTP bit. UnsupportedModification, /// Value being written is bigger than 24 bits allowed for raw writes. Overflow, /// An unexpected failure that contains the exact return code UnexpectedFailure(i32), } /// OTP read address, using automatic Error Correction. /// /// A 32-bit read returns the ECC-corrected data for two neighbouring rows, or /// all-ones on permission failure. Only the first 8 KiB is populated. pub const OTP_DATA_BASE: *const u32 = 0x4013_0000 as *const u32; /// OTP read address, without using any automatic Error Correction. /// /// A 32-bit read returns 24-bits of raw data from the OTP word. pub const OTP_DATA_RAW_BASE: *const u32 = 0x4013_4000 as *const u32; /// How many pages in OTP (post error-correction) pub const NUM_PAGES: usize = 64; /// How many rows in one page in OTP (post error-correction) pub const NUM_ROWS_PER_PAGE: usize = 64; /// How many rows in OTP (post error-correction) pub const NUM_ROWS: usize = NUM_PAGES * NUM_ROWS_PER_PAGE; /// 24bit mask for raw writes pub const RAW_WRITE_BIT_MASK: u32 = 0x00FF_FFFF; /// Read one ECC protected word from the OTP pub fn read_ecc_word(row: usize) -> Result { if row >= NUM_ROWS { return Err(Error::InvalidIndex); } // First do a raw read to check permissions let _ = read_raw_word(row)?; // One 32-bit read gets us two rows let offset = row >> 1; // # Safety // // We checked this offset was in range already. let value = unsafe { OTP_DATA_BASE.add(offset).read() }; if (row & 1) == 0 { Ok(value as u16) } else { Ok((value >> 16) as u16) } } /// Read one raw word from the OTP /// /// You get the 24-bit raw value in the lower part of the 32-bit result. pub fn read_raw_word(row: usize) -> Result { if row >= NUM_ROWS { return Err(Error::InvalidIndex); } // One 32-bit read gets us one row // # Safety // // We checked this offset was in range already. let value = unsafe { OTP_DATA_RAW_BASE.add(row).read() }; if value == 0xFFFF_FFFF { Err(Error::InvalidPermissions) } else { Ok(value) } } /// Write one raw word to the OTP /// /// 24 bit value will be written to the OTP pub fn write_raw_word(row: usize, data: u32) -> Result<(), Error> { if data > RAW_WRITE_BIT_MASK { return Err(Error::Overflow); } if row >= NUM_ROWS { return Err(Error::InvalidIndex); } let row_with_write_bit = row | 0x00010000; // # Safety // // We checked this row was in range already. let result = unsafe { otp_access(data.to_le_bytes().as_mut_ptr(), 4, row_with_write_bit as u32) }; if result == 0 { Ok(()) } else { // 5.4.3. API Function Return Codes let error = match result { -4 => Error::InvalidPermissions, -18 => Error::UnsupportedModification, _ => Error::UnexpectedFailure(result), }; Err(error) } } /// Write one raw word to the OTP with ECC /// /// 16 bit value will be written + ECC pub fn write_ecc_word(row: usize, data: u16) -> Result<(), Error> { if row >= NUM_ROWS { return Err(Error::InvalidIndex); } let row_with_write_and_ecc_bit = row | 0x00030000; // # Safety // // We checked this row was in range already. let result = unsafe { otp_access(data.to_le_bytes().as_mut_ptr(), 2, row_with_write_and_ecc_bit as u32) }; if result == 0 { Ok(()) } else { // 5.4.3. API Function Return Codes // 5.4.3. API Function Return Codes let error = match result { -4 => Error::InvalidPermissions, -18 => Error::UnsupportedModification, _ => Error::UnexpectedFailure(result), }; Err(error) } } /// Get the random 64bit chipid from rows 0x0-0x3. pub fn get_chipid() -> Result { let w0 = read_ecc_word(0x000)?.to_be_bytes(); let w1 = read_ecc_word(0x001)?.to_be_bytes(); let w2 = read_ecc_word(0x002)?.to_be_bytes(); let w3 = read_ecc_word(0x003)?.to_be_bytes(); Ok(u64::from_be_bytes([ w3[0], w3[1], w2[0], w2[1], w1[0], w1[1], w0[0], w0[1], ])) } /// Get the 128bit private random number from rows 0x4-0xb. /// /// This ID is not exposed through the USB PICOBOOT GET_INFO command /// or the ROM get_sys_info() API. However note that the USB PICOBOOT OTP /// access point can read the entirety of page 0, so this value is not /// meaningfully private unless the USB PICOBOOT interface is disabled via the //// DISABLE_BOOTSEL_USB_PICOBOOT_IFC flag in BOOT_FLAGS0 pub fn get_private_random_number() -> Result { let w0 = read_ecc_word(0x004)?.to_be_bytes(); let w1 = read_ecc_word(0x005)?.to_be_bytes(); let w2 = read_ecc_word(0x006)?.to_be_bytes(); let w3 = read_ecc_word(0x007)?.to_be_bytes(); let w4 = read_ecc_word(0x008)?.to_be_bytes(); let w5 = read_ecc_word(0x009)?.to_be_bytes(); let w6 = read_ecc_word(0x00a)?.to_be_bytes(); let w7 = read_ecc_word(0x00b)?.to_be_bytes(); Ok(u128::from_be_bytes([ w7[0], w7[1], w6[0], w6[1], w5[0], w5[1], w4[0], w4[1], w3[0], w3[1], w2[0], w2[1], w1[0], w1[1], w0[0], w0[1], ])) }