//! Driver for the STM32 bxCAN peripheral. //! //! This crate provides a reusable driver for the bxCAN peripheral found in many low- to middle-end //! STM32 microcontrollers. HALs for compatible chips can reexport this crate and implement its //! traits to easily expose a featureful CAN driver. //! //! # Features //! //! - Supports both single- and dual-peripheral configurations (where one bxCAN instance manages the //! filters of a secondary instance). //! - Handles standard and extended frames, and data and remote frames. //! - Support for interrupts emitted by the bxCAN peripheral. //! - Transmission respects CAN IDs and protects against priority inversion (a lower-priority frame //! may be dequeued when enqueueing a higher-priority one). //! - Implements the [`embedded-hal`] traits for interoperability. //! - Support for both RX FIFOs (as [`Rx0`] and [`Rx1`]). //! //! # Limitations //! //! - Support for querying error states and handling error interrupts is incomplete. //! // Deny a few warnings in doctests, since rustdoc `allow`s many warnings by default #![allow(clippy::unnecessary_operation)] // lint is bugged //mod embedded_hal; pub mod filter; #[allow(clippy::all)] // generated code use core::cmp::{Ord, Ordering}; use core::convert::Infallible; use core::marker::PhantomData; use core::mem; pub use embedded_can::{ExtendedId, Id, StandardId}; /// CAN Header: includes ID and length pub type Header = crate::can::frame::Header; /// Data for a CAN Frame pub type Data = crate::can::frame::ClassicData; use crate::can::_version::Envelope; use crate::can::bx::filter::MasterFilters; use crate::can::enums::BusError; /// CAN Frame pub use crate::can::frame::Frame; use crate::pac::can::vals::Lec; #[derive(Debug, Copy, Clone, Eq, PartialEq)] pub(crate) enum RxFifo { Fifo0, Fifo1, } trait IntoBusError { fn into_bus_err(self) -> Option; } impl IntoBusError for Lec { fn into_bus_err(self) -> Option { match self { Lec::STUFF => Some(BusError::Stuff), Lec::FORM => Some(BusError::Form), Lec::ACK => Some(BusError::Acknowledge), Lec::BITRECESSIVE => Some(BusError::BitRecessive), Lec::BITDOMINANT => Some(BusError::BitDominant), Lec::CRC => Some(BusError::Crc), Lec::CUSTOM => Some(BusError::Software), _ => None, } } } /// A bxCAN peripheral instance. /// /// This trait is meant to be implemented for a HAL-specific type that represent ownership of /// the CAN peripheral (and any pins required by it, although that is entirely up to the HAL). /// /// # Safety /// /// It is only safe to implement this trait, when: /// /// * The implementing type has ownership of the peripheral, preventing any other accesses to the /// register block. /// * `REGISTERS` is a pointer to that peripheral's register block and can be safely accessed for as /// long as ownership or a borrow of the implementing type is present. pub unsafe trait Instance {} /// A bxCAN instance that owns filter banks. /// /// In master-slave-instance setups, only the master instance owns the filter banks, and needs to /// split some of them off for use by the slave instance. In that case, the master instance should /// implement [`FilterOwner`] and [`MasterInstance`], while the slave instance should only implement /// [`Instance`]. /// /// In single-instance configurations, the instance owns all filter banks and they can not be split /// off. In that case, the instance should implement [`Instance`] and [`FilterOwner`]. /// /// # Safety /// /// This trait must only be implemented if the instance does, in fact, own its associated filter /// banks, and `NUM_FILTER_BANKS` must be correct. pub unsafe trait FilterOwner: Instance { /// The total number of filter banks available to the instance. /// /// This is usually either 14 or 28, and should be specified in the chip's reference manual or datasheet. const NUM_FILTER_BANKS: u8; } /// A bxCAN master instance that shares filter banks with a slave instance. /// /// In master-slave-instance setups, this trait should be implemented for the master instance. /// /// # Safety /// /// This trait must only be implemented when there is actually an associated slave instance. pub unsafe trait MasterInstance: FilterOwner {} // TODO: what to do with these? /* #[derive(Debug, Copy, Clone, Eq, PartialEq, Format)] pub enum Error { Stuff, Form, Acknowledgement, BitRecessive, BitDominant, Crc, Software, }*/ /// Error that indicates that an incoming message has been lost due to buffer overrun. #[derive(Debug, Clone, Copy, PartialEq, Eq)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub struct OverrunError { _priv: (), } /// Identifier of a CAN message. /// /// Can be either a standard identifier (11bit, Range: 0..0x3FF) or a /// extendended identifier (29bit , Range: 0..0x1FFFFFFF). /// /// The `Ord` trait can be used to determine the frame’s priority this ID /// belongs to. /// Lower identifier values have a higher priority. Additionally standard frames /// have a higher priority than extended frames and data frames have a higher /// priority than remote frames. #[derive(Clone, Copy, Debug, PartialEq, Eq)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub(crate) struct IdReg(u32); impl IdReg { const STANDARD_SHIFT: u32 = 21; const EXTENDED_SHIFT: u32 = 3; const IDE_MASK: u32 = 0x0000_0004; const RTR_MASK: u32 = 0x0000_0002; /// Creates a new standard identifier (11bit, Range: 0..0x7FF) /// /// Panics for IDs outside the allowed range. fn new_standard(id: StandardId) -> Self { Self(u32::from(id.as_raw()) << Self::STANDARD_SHIFT) } /// Creates a new extendended identifier (29bit , Range: 0..0x1FFFFFFF). /// /// Panics for IDs outside the allowed range. fn new_extended(id: ExtendedId) -> IdReg { Self(id.as_raw() << Self::EXTENDED_SHIFT | Self::IDE_MASK) } fn from_register(reg: u32) -> IdReg { Self(reg & 0xFFFF_FFFE) } /// Returns the identifier. fn to_id(self) -> Id { if self.is_extended() { Id::Extended(unsafe { ExtendedId::new_unchecked(self.0 >> Self::EXTENDED_SHIFT) }) } else { Id::Standard(unsafe { StandardId::new_unchecked((self.0 >> Self::STANDARD_SHIFT) as u16) }) } } /// Returns the identifier. fn id(self) -> embedded_can::Id { if self.is_extended() { embedded_can::ExtendedId::new(self.0 >> Self::EXTENDED_SHIFT) .unwrap() .into() } else { embedded_can::StandardId::new((self.0 >> Self::STANDARD_SHIFT) as u16) .unwrap() .into() } } /// Returns `true` if the identifier is an extended identifier. fn is_extended(self) -> bool { self.0 & Self::IDE_MASK != 0 } /// Returns `true` if the identifer is part of a remote frame (RTR bit set). fn rtr(self) -> bool { self.0 & Self::RTR_MASK != 0 } } impl From<&embedded_can::Id> for IdReg { fn from(eid: &embedded_can::Id) -> Self { match eid { embedded_can::Id::Standard(id) => IdReg::new_standard(StandardId::new(id.as_raw()).unwrap()), embedded_can::Id::Extended(id) => IdReg::new_extended(ExtendedId::new(id.as_raw()).unwrap()), } } } impl From for embedded_can::Id { fn from(idr: IdReg) -> Self { idr.id() } } /// `IdReg` is ordered by priority. impl Ord for IdReg { fn cmp(&self, other: &Self) -> Ordering { // When the IDs match, data frames have priority over remote frames. let rtr = self.rtr().cmp(&other.rtr()).reverse(); let id_a = self.to_id(); let id_b = other.to_id(); match (id_a, id_b) { (Id::Standard(a), Id::Standard(b)) => { // Lower IDs have priority over higher IDs. a.as_raw().cmp(&b.as_raw()).reverse().then(rtr) } (Id::Extended(a), Id::Extended(b)) => a.as_raw().cmp(&b.as_raw()).reverse().then(rtr), (Id::Standard(a), Id::Extended(b)) => { // Standard frames have priority over extended frames if their Base IDs match. a.as_raw() .cmp(&b.standard_id().as_raw()) .reverse() .then(Ordering::Greater) } (Id::Extended(a), Id::Standard(b)) => { a.standard_id().as_raw().cmp(&b.as_raw()).reverse().then(Ordering::Less) } } } } impl PartialOrd for IdReg { fn partial_cmp(&self, other: &Self) -> Option { Some(self.cmp(other)) } } pub(crate) struct Registers { pub canregs: crate::pac::can::Can, } impl Registers { fn enter_init_mode(&mut self) { self.canregs.mcr().modify(|reg| { reg.set_sleep(false); reg.set_inrq(true); }); loop { let msr = self.canregs.msr().read(); if !msr.slak() && msr.inak() { break; } } } // Leaves initialization mode, enters sleep mode. fn leave_init_mode(&mut self) { self.canregs.mcr().modify(|reg| { reg.set_sleep(true); reg.set_inrq(false); }); loop { let msr = self.canregs.msr().read(); if msr.slak() && !msr.inak() { break; } } } fn set_bit_timing(&mut self, bt: crate::can::util::NominalBitTiming) { let prescaler = u16::from(bt.prescaler) & 0x1FF; let seg1 = u8::from(bt.seg1); let seg2 = u8::from(bt.seg2) & 0x7F; let sync_jump_width = u8::from(bt.sync_jump_width) & 0x7F; self.canregs.btr().modify(|reg| { reg.set_brp(prescaler - 1); reg.set_ts(0, seg1 - 1); reg.set_ts(1, seg2 - 1); reg.set_sjw(sync_jump_width - 1); }); } /// Enables or disables silent mode: Disconnects the TX signal from the pin. pub fn set_silent(&self, enabled: bool) { let mode = match enabled { false => stm32_metapac::can::vals::Silm::NORMAL, true => stm32_metapac::can::vals::Silm::SILENT, }; self.canregs.btr().modify(|reg| reg.set_silm(mode)); } /// Enables or disables automatic retransmission of messages. /// /// If this is enabled, the CAN peripheral will automatically try to retransmit each frame /// until it can be sent. Otherwise, it will try only once to send each frame. /// /// Automatic retransmission is enabled by default. pub fn set_automatic_retransmit(&self, enabled: bool) { self.canregs.mcr().modify(|reg| reg.set_nart(enabled)); } /// Enables or disables loopback mode: Internally connects the TX and RX /// signals together. pub fn set_loopback(&self, enabled: bool) { self.canregs.btr().modify(|reg| reg.set_lbkm(enabled)); } /// Configures the automatic wake-up feature. /// /// This is turned off by default. /// /// When turned on, an incoming frame will cause the peripheral to wake up from sleep and /// receive the frame. If enabled, [`Interrupt::Wakeup`] will also be triggered by the incoming /// frame. #[allow(dead_code)] pub fn set_automatic_wakeup(&mut self, enabled: bool) { self.canregs.mcr().modify(|reg| reg.set_awum(enabled)); } /// Leaves initialization mode and enables the peripheral (non-blocking version). /// /// Usually, it is recommended to call [`CanConfig::enable`] instead. This method is only needed /// if you want non-blocking initialization. /// /// If this returns [`WouldBlock`][nb::Error::WouldBlock], the peripheral will enable itself /// in the background. The peripheral is enabled and ready to use when this method returns /// successfully. pub fn enable_non_blocking(&mut self) -> nb::Result<(), Infallible> { let msr = self.canregs.msr().read(); if msr.slak() { self.canregs.mcr().modify(|reg| { reg.set_abom(true); reg.set_sleep(false); }); Err(nb::Error::WouldBlock) } else { Ok(()) } } /// Puts the peripheral in a sleep mode to save power. /// /// While in sleep mode, an incoming CAN frame will trigger [`Interrupt::Wakeup`] if enabled. #[allow(dead_code)] pub fn sleep(&mut self) { self.canregs.mcr().modify(|reg| { reg.set_sleep(true); reg.set_inrq(false); }); loop { let msr = self.canregs.msr().read(); if msr.slak() && !msr.inak() { break; } } } /// Disables the CAN interface. /// /// The peripheral is disabled by setting `RESET` in `CAN_MCR`, which causes the peripheral to /// enter sleep mode. pub fn reset(&self) { self.canregs.mcr().write(|reg| reg.set_reset(true)); } /// Wakes up from sleep mode. /// /// Note that this will not trigger [`Interrupt::Wakeup`], only reception of an incoming CAN /// frame will cause that interrupt. #[allow(dead_code)] pub fn wakeup(&mut self) { self.canregs.mcr().modify(|reg| { reg.set_sleep(false); reg.set_inrq(false); }); loop { let msr = self.canregs.msr().read(); if !msr.slak() && !msr.inak() { break; } } } pub fn curr_error(&self) -> Option { let err = { self.canregs.esr().read() }; if err.boff() { return Some(BusError::BusOff); } else if err.epvf() { return Some(BusError::BusPassive); } else if err.ewgf() { return Some(BusError::BusWarning); } else if let Some(err) = err.lec().into_bus_err() { return Some(err); } None } /// Puts a CAN frame in a transmit mailbox for transmission on the bus. /// /// Frames are transmitted to the bus based on their priority (see [`FramePriority`]). /// Transmit order is preserved for frames with identical priority. /// /// If all transmit mailboxes are full, and `frame` has a higher priority than the /// lowest-priority message in the transmit mailboxes, transmission of the enqueued frame is /// cancelled and `frame` is enqueued instead. The frame that was replaced is returned as /// [`TransmitStatus::dequeued_frame`]. pub fn transmit(&mut self, frame: &Frame) -> nb::Result { // Get the index of the next free mailbox or the one with the lowest priority. let tsr = self.canregs.tsr().read(); let idx = tsr.code() as usize; let frame_is_pending = !tsr.tme(0) || !tsr.tme(1) || !tsr.tme(2); let pending_frame = if frame_is_pending { // High priority frames are transmitted first by the mailbox system. // Frames with identical identifier shall be transmitted in FIFO order. // The controller schedules pending frames of same priority based on the // mailbox index instead. As a workaround check all pending mailboxes // and only accept higher priority frames. self.check_priority(0, frame.id().into())?; self.check_priority(1, frame.id().into())?; self.check_priority(2, frame.id().into())?; let all_frames_are_pending = !tsr.tme(0) && !tsr.tme(1) && !tsr.tme(2); if all_frames_are_pending { // No free mailbox is available. This can only happen when three frames with // ascending priority (descending IDs) were requested for transmission and all // of them are blocked by bus traffic with even higher priority. // To prevent a priority inversion abort and replace the lowest priority frame. self.read_pending_mailbox(idx) } else { // There was a free mailbox. None } } else { // All mailboxes are available: Send frame without performing any checks. None }; self.write_mailbox(idx, frame); let mailbox = match idx { 0 => Mailbox::Mailbox0, 1 => Mailbox::Mailbox1, 2 => Mailbox::Mailbox2, _ => unreachable!(), }; Ok(TransmitStatus { dequeued_frame: pending_frame, mailbox, }) } /// Returns `Ok` when the mailbox is free or if it contains pending frame with a /// lower priority (higher ID) than the identifier `id`. fn check_priority(&self, idx: usize, id: IdReg) -> nb::Result<(), Infallible> { // Read the pending frame's id to check its priority. assert!(idx < 3); let tir = &self.canregs.tx(idx).tir().read(); //let tir = &can.tx[idx].tir.read(); // Check the priority by comparing the identifiers. But first make sure the // frame has not finished the transmission (`TXRQ` == 0) in the meantime. if tir.txrq() && id <= IdReg::from_register(tir.0) { // There's a mailbox whose priority is higher or equal // the priority of the new frame. return Err(nb::Error::WouldBlock); } Ok(()) } fn write_mailbox(&mut self, idx: usize, frame: &Frame) { debug_assert!(idx < 3); let mb = self.canregs.tx(idx); mb.tdtr().write(|w| w.set_dlc(frame.header().len() as u8)); mb.tdlr() .write(|w| w.0 = u32::from_ne_bytes(frame.data()[0..4].try_into().unwrap())); mb.tdhr() .write(|w| w.0 = u32::from_ne_bytes(frame.data()[4..8].try_into().unwrap())); let id: IdReg = frame.id().into(); mb.tir().write(|w| { w.0 = id.0; w.set_txrq(true); }); } fn read_pending_mailbox(&mut self, idx: usize) -> Option { if self.abort_by_index(idx) { debug_assert!(idx < 3); let mb = self.canregs.tx(idx); let id = IdReg(mb.tir().read().0); let mut data = [0xff; 8]; data[0..4].copy_from_slice(&mb.tdlr().read().0.to_ne_bytes()); data[4..8].copy_from_slice(&mb.tdhr().read().0.to_ne_bytes()); let len = mb.tdtr().read().dlc(); Some(Frame::new(Header::new(id.id(), len, id.rtr()), &data).unwrap()) } else { // Abort request failed because the frame was already sent (or being sent) on // the bus. All mailboxes are now free. This can happen for small prescaler // values (e.g. 1MBit/s bit timing with a source clock of 8MHz) or when an ISR // has preempted the execution. None } } /// Tries to abort a pending frame. Returns `true` when aborted. fn abort_by_index(&mut self, idx: usize) -> bool { self.canregs.tsr().write(|reg| reg.set_abrq(idx, true)); // Wait for the abort request to be finished. loop { let tsr = self.canregs.tsr().read(); if false == tsr.abrq(idx) { break tsr.txok(idx) == false; } } } /// Attempts to abort the sending of a frame that is pending in a mailbox. /// /// If there is no frame in the provided mailbox, or its transmission succeeds before it can be /// aborted, this function has no effect and returns `false`. /// /// If there is a frame in the provided mailbox, and it is canceled successfully, this function /// returns `true`. pub fn abort(&mut self, mailbox: Mailbox) -> bool { // If the mailbox is empty, the value of TXOKx depends on what happened with the previous // frame in that mailbox. Only call abort_by_index() if the mailbox is not empty. let tsr = self.canregs.tsr().read(); let mailbox_empty = match mailbox { Mailbox::Mailbox0 => tsr.tme(0), Mailbox::Mailbox1 => tsr.tme(1), Mailbox::Mailbox2 => tsr.tme(2), }; if mailbox_empty { false } else { self.abort_by_index(mailbox as usize) } } /// Returns `true` if no frame is pending for transmission. pub fn is_idle(&self) -> bool { let tsr = self.canregs.tsr().read(); tsr.tme(0) && tsr.tme(1) && tsr.tme(2) } /// Clears the request complete flag for all mailboxes. pub fn clear_interrupt_flags(&mut self) { self.canregs.tsr().write(|reg| { reg.set_rqcp(0, true); reg.set_rqcp(1, true); reg.set_rqcp(2, true); }); } pub fn receive_frame_available(&self) -> bool { if self.canregs.rfr(0).read().fmp() != 0 { true } else if self.canregs.rfr(1).read().fmp() != 0 { true } else { false } } pub fn receive_fifo(&self, fifo: crate::can::_version::bx::RxFifo) -> Option { // Generate timestamp as early as possible #[cfg(feature = "time")] let ts = embassy_time::Instant::now(); use crate::pac::can::vals::Ide; let fifo_idx = match fifo { crate::can::_version::bx::RxFifo::Fifo0 => 0usize, crate::can::_version::bx::RxFifo::Fifo1 => 1usize, }; let rfr = self.canregs.rfr(fifo_idx); let fifo = self.canregs.rx(fifo_idx); // If there are no pending messages, there is nothing to do if rfr.read().fmp() == 0 { return None; } let rir = fifo.rir().read(); let id: embedded_can::Id = if rir.ide() == Ide::STANDARD { embedded_can::StandardId::new(rir.stid()).unwrap().into() } else { let stid = (rir.stid() & 0x7FF) as u32; let exid = rir.exid() & 0x3FFFF; let id = (stid << 18) | (exid); embedded_can::ExtendedId::new(id).unwrap().into() }; let rdtr = fifo.rdtr().read(); let data_len = rdtr.dlc(); let rtr = rir.rtr() == stm32_metapac::can::vals::Rtr::REMOTE; #[cfg(not(feature = "time"))] let ts = rdtr.time(); let mut data: [u8; 8] = [0; 8]; data[0..4].copy_from_slice(&fifo.rdlr().read().0.to_ne_bytes()); data[4..8].copy_from_slice(&fifo.rdhr().read().0.to_ne_bytes()); let frame = Frame::new(Header::new(id, data_len, rtr), &data).unwrap(); let envelope = Envelope { ts, frame }; rfr.modify(|v| v.set_rfom(true)); Some(envelope) } } /// Configuration proxy returned by [`Can::modify_config`]. #[must_use = "`CanConfig` leaves the peripheral in uninitialized state, call `CanConfig::enable` or explicitly drop the value"] pub struct CanConfig<'a, I: Instance> { can: &'a mut Can, } impl CanConfig<'_, I> { /// Configures the bit timings. /// /// You can use to calculate the `btr` parameter. Enter /// parameters as follows: /// /// - *Clock Rate*: The input clock speed to the CAN peripheral (*not* the CPU clock speed). /// This is the clock rate of the peripheral bus the CAN peripheral is attached to (eg. APB1). /// - *Sample Point*: Should normally be left at the default value of 87.5%. /// - *SJW*: Should normally be left at the default value of 1. /// /// Then copy the `CAN_BUS_TIME` register value from the table and pass it as the `btr` /// parameter to this method. pub fn set_bit_timing(self, bt: crate::can::util::NominalBitTiming) -> Self { self.can.registers.set_bit_timing(bt); self } /// Enables or disables loopback mode: Internally connects the TX and RX /// signals together. pub fn set_loopback(self, enabled: bool) -> Self { self.can.registers.set_loopback(enabled); self } /// Enables or disables silent mode: Disconnects the TX signal from the pin. pub fn set_silent(self, enabled: bool) -> Self { self.can.registers.set_silent(enabled); self } /// Enables or disables automatic retransmission of messages. /// /// If this is enabled, the CAN peripheral will automatically try to retransmit each frame /// until it can be sent. Otherwise, it will try only once to send each frame. /// /// Automatic retransmission is enabled by default. pub fn set_automatic_retransmit(self, enabled: bool) -> Self { self.can.registers.set_automatic_retransmit(enabled); self } /// Leaves initialization mode and enables the peripheral. /// /// To sync with the CAN bus, this will block until 11 consecutive recessive bits are detected /// on the bus. /// /// If you want to finish configuration without enabling the peripheral, you can call /// [`CanConfig::leave_disabled`] or [`drop`] the [`CanConfig`] instead. pub fn enable(self) { self.can.registers.leave_init_mode(); match nb::block!(self.can.registers.enable_non_blocking()) { Ok(()) => {} Err(void) => match void {}, } // Don't run the destructor. mem::forget(self); } /// Leaves initialization mode, but keeps the peripheral in sleep mode. /// /// Before the [`Can`] instance can be used, you have to enable it by calling /// [`Can::enable_non_blocking`]. pub fn leave_disabled(self) { self.can.registers.leave_init_mode(); } } impl Drop for CanConfig<'_, I> { #[inline] fn drop(&mut self) { self.can.registers.leave_init_mode(); } } /// Builder returned by [`Can::builder`]. #[must_use = "`CanBuilder` leaves the peripheral in uninitialized state, call `CanBuilder::enable` or `CanBuilder::leave_disabled`"] pub struct CanBuilder { can: Can, } impl CanBuilder { /// Configures the bit timings. /// /// You can use to calculate the `btr` parameter. Enter /// parameters as follows: /// /// - *Clock Rate*: The input clock speed to the CAN peripheral (*not* the CPU clock speed). /// This is the clock rate of the peripheral bus the CAN peripheral is attached to (eg. APB1). /// - *Sample Point*: Should normally be left at the default value of 87.5%. /// - *SJW*: Should normally be left at the default value of 1. /// /// Then copy the `CAN_BUS_TIME` register value from the table and pass it as the `btr` /// parameter to this method. pub fn set_bit_timing(mut self, bt: crate::can::util::NominalBitTiming) -> Self { self.can.registers.set_bit_timing(bt); self } /// Enables or disables loopback mode: Internally connects the TX and RX /// signals together. pub fn set_loopback(self, enabled: bool) -> Self { self.can.registers.set_loopback(enabled); self } /// Enables or disables silent mode: Disconnects the TX signal from the pin. pub fn set_silent(self, enabled: bool) -> Self { self.can.registers.set_silent(enabled); self } /// Enables or disables automatic retransmission of messages. /// /// If this is enabled, the CAN peripheral will automatically try to retransmit each frame /// until it can be sent. Otherwise, it will try only once to send each frame. /// /// Automatic retransmission is enabled by default. pub fn set_automatic_retransmit(self, enabled: bool) -> Self { self.can.registers.set_automatic_retransmit(enabled); self } /// Leaves initialization mode and enables the peripheral. /// /// To sync with the CAN bus, this will block until 11 consecutive recessive bits are detected /// on the bus. /// /// If you want to finish configuration without enabling the peripheral, you can call /// [`CanBuilder::leave_disabled`] instead. pub fn enable(mut self) -> Can { self.leave_init_mode(); match nb::block!(self.can.registers.enable_non_blocking()) { Ok(()) => self.can, Err(void) => match void {}, } } /// Returns the [`Can`] interface without enabling it. /// /// This leaves initialization mode, but keeps the peripheral in sleep mode instead of enabling /// it. /// /// Before the [`Can`] instance can be used, you have to enable it by calling /// [`Can::enable_non_blocking`]. pub fn leave_disabled(mut self) -> Can { self.leave_init_mode(); self.can } /// Leaves initialization mode, enters sleep mode. fn leave_init_mode(&mut self) { self.can.registers.leave_init_mode(); } } /// Interface to a bxCAN peripheral. pub struct Can { instance: I, canregs: crate::pac::can::Can, pub(crate) registers: Registers, } impl Can where I: Instance, { /// Creates a [`CanBuilder`] for constructing a CAN interface. pub fn builder(instance: I, canregs: crate::pac::can::Can) -> CanBuilder { let mut can_builder = CanBuilder { can: Can { instance, canregs, registers: Registers { canregs }, }, }; can_builder.can.registers.enter_init_mode(); can_builder } /// Disables the CAN interface and returns back the raw peripheral it was created from. /// /// The peripheral is disabled by setting `RESET` in `CAN_MCR`, which causes the peripheral to /// enter sleep mode. pub fn free(self) -> I { self.registers.reset(); self.instance } /// Configure bit timings and silent/loop-back mode. /// /// Calling this method will enter initialization mode. pub fn modify_config(&mut self) -> CanConfig<'_, I> { self.registers.enter_init_mode(); CanConfig { can: self } } /// Puts a CAN frame in a free transmit mailbox for transmission on the bus. /// /// Frames are transmitted to the bus based on their priority (see [`FramePriority`]). /// Transmit order is preserved for frames with identical priority. /// /// If all transmit mailboxes are full, and `frame` has a higher priority than the /// lowest-priority message in the transmit mailboxes, transmission of the enqueued frame is /// cancelled and `frame` is enqueued instead. The frame that was replaced is returned as /// [`TransmitStatus::dequeued_frame`]. pub fn transmit(&mut self, frame: &Frame) -> nb::Result { // Safety: We have a `&mut self` and have unique access to the peripheral. unsafe { Tx::::conjure(self.canregs).transmit(frame) } } /// Returns `true` if no frame is pending for transmission. pub fn is_transmitter_idle(&self) -> bool { // Safety: Read-only operation. unsafe { Tx::::conjure(self.canregs).is_idle() } } /// Attempts to abort the sending of a frame that is pending in a mailbox. /// /// If there is no frame in the provided mailbox, or its transmission succeeds before it can be /// aborted, this function has no effect and returns `false`. /// /// If there is a frame in the provided mailbox, and it is canceled successfully, this function /// returns `true`. pub fn abort(&mut self, mailbox: Mailbox) -> bool { // Safety: We have a `&mut self` and have unique access to the peripheral. unsafe { Tx::::conjure(self.canregs).abort(mailbox) } } pub(crate) fn split_by_ref(&mut self) -> (Tx, Rx) { // Safety: We take `&mut self` and the return value lifetimes are tied to `self`'s lifetime. let tx = unsafe { Tx::conjure(self.canregs) }; let rx0 = unsafe { Rx::conjure() }; (tx, rx0) } } impl Can { /// Accesses the filter banks owned by this CAN peripheral. /// /// To modify filters of a slave peripheral, `modify_filters` has to be called on the master /// peripheral instead. pub fn modify_filters(&mut self) -> MasterFilters<'_, I> { unsafe { MasterFilters::new(self.canregs) } } } /// Marker for Tx half pub struct Tx { _can: PhantomData, pub(crate) registers: Registers, } impl Tx where I: Instance, { unsafe fn conjure(canregs: crate::pac::can::Can) -> Self { Self { _can: PhantomData, registers: Registers { canregs }, //canregs, } } /// Puts a CAN frame in a transmit mailbox for transmission on the bus. /// /// Frames are transmitted to the bus based on their priority (see [`FramePriority`]). /// Transmit order is preserved for frames with identical priority. /// /// If all transmit mailboxes are full, and `frame` has a higher priority than the /// lowest-priority message in the transmit mailboxes, transmission of the enqueued frame is /// cancelled and `frame` is enqueued instead. The frame that was replaced is returned as /// [`TransmitStatus::dequeued_frame`]. pub fn transmit(&mut self, frame: &Frame) -> nb::Result { self.registers.transmit(frame) } /// Attempts to abort the sending of a frame that is pending in a mailbox. /// /// If there is no frame in the provided mailbox, or its transmission succeeds before it can be /// aborted, this function has no effect and returns `false`. /// /// If there is a frame in the provided mailbox, and it is canceled successfully, this function /// returns `true`. pub fn abort(&mut self, mailbox: Mailbox) -> bool { self.registers.abort(mailbox) } /// Returns `true` if no frame is pending for transmission. pub fn is_idle(&self) -> bool { self.registers.is_idle() } /// Clears the request complete flag for all mailboxes. pub fn clear_interrupt_flags(&mut self) { self.registers.clear_interrupt_flags() } } /// Marker for Rx half pub struct Rx { _can: PhantomData, } impl Rx where I: Instance, { unsafe fn conjure() -> Self { Self { _can: PhantomData } } } /// Identifies one of the two receive FIFOs. #[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum Fifo { /// First receive FIFO Fifo0 = 0, /// Second receive FIFO Fifo1 = 1, } /// Identifies one of the three transmit mailboxes. #[derive(Debug, Copy, Clone, Ord, PartialOrd, Eq, PartialEq)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] pub enum Mailbox { /// Transmit mailbox 0 Mailbox0 = 0, /// Transmit mailbox 1 Mailbox1 = 1, /// Transmit mailbox 2 Mailbox2 = 2, } /// Contains information about a frame enqueued for transmission via [`Can::transmit`] or /// [`Tx::transmit`]. pub struct TransmitStatus { dequeued_frame: Option, mailbox: Mailbox, } impl TransmitStatus { /// Returns the lower-priority frame that was dequeued to make space for the new frame. #[inline] pub fn dequeued_frame(&self) -> Option<&Frame> { self.dequeued_frame.as_ref() } /// Returns the [`Mailbox`] the frame was enqueued in. #[inline] pub fn mailbox(&self) -> Mailbox { self.mailbox } }