use core::ptr::write_volatile; use core::sync::atomic::{fence, Ordering}; use cortex_m::interrupt; use super::{FlashSector, WRITE_SIZE}; use crate::flash::Error; use crate::pac; pub(crate) unsafe fn lock() { pac::FLASH.cr().modify(|w| w.set_lock(true)); } pub(crate) unsafe fn unlock() { // Wait, while the memory interface is busy. wait_busy(); // Unlock flash if pac::FLASH.cr().read().lock() { pac::FLASH.keyr().write_value(0x4567_0123); pac::FLASH.keyr().write_value(0xCDEF_89AB); } } pub(crate) unsafe fn enable_blocking_write() { assert_eq!(0, WRITE_SIZE % 4); pac::FLASH.cr().write(|w| w.set_pg(true)); } pub(crate) unsafe fn disable_blocking_write() { pac::FLASH.cr().write(|w| w.set_pg(false)); } pub(crate) unsafe fn blocking_write(start_address: u32, buf: &[u8; WRITE_SIZE]) -> Result<(), Error> { let mut address = start_address; for val in buf.chunks(4) { write_volatile(address as *mut u32, u32::from_le_bytes(unwrap!(val.try_into()))); address += val.len() as u32; // prevents parallelism errors fence(Ordering::SeqCst); } wait_ready_blocking() } pub(crate) unsafe fn blocking_erase_sector(sector: &FlashSector) -> Result<(), Error> { let idx = (sector.start - super::FLASH_BASE as u32) / super::BANK1_REGION.erase_size as u32; wait_busy(); clear_all_err(); interrupt::free(|_| { pac::FLASH.cr().modify(|w| { w.set_per(true); #[cfg(any(flash_g0x0, flash_g0x1, flash_g4c3))] w.set_bker(sector.bank == crate::flash::FlashBank::Bank2); #[cfg(flash_g0x0)] w.set_pnb(idx as u16); #[cfg(not(flash_g0x0))] w.set_pnb(idx as u8); w.set_strt(true); }); }); let ret: Result<(), Error> = wait_ready_blocking(); pac::FLASH.cr().modify(|w| w.set_per(false)); ret } pub(crate) unsafe fn wait_ready_blocking() -> Result<(), Error> { while pac::FLASH.sr().read().bsy() {} let sr = pac::FLASH.sr().read(); if sr.progerr() { return Err(Error::Prog); } if sr.wrperr() { return Err(Error::Protected); } if sr.pgaerr() { return Err(Error::Unaligned); } Ok(()) } pub(crate) unsafe fn clear_all_err() { // read and write back the same value. // This clears all "write 1 to clear" bits. pac::FLASH.sr().modify(|_| {}); } #[cfg(any(flash_g0x0, flash_g0x1))] fn wait_busy() { while pac::FLASH.sr().read().bsy() | pac::FLASH.sr().read().bsy2() {} } #[cfg(not(any(flash_g0x0, flash_g0x1)))] fn wait_busy() { while pac::FLASH.sr().read().bsy() {} } #[cfg(all(bank_setup_configurable, any(flash_g4c2, flash_g4c3, flash_g4c4)))] pub(crate) fn check_bank_setup() { if cfg!(feature = "single-bank") && pac::FLASH.optr().read().dbank() { panic!("Embassy is configured as single-bank, but the hardware is running in dual-bank mode. Change the hardware by changing the dbank value in the user option bytes or configure embassy to use dual-bank config"); } if cfg!(feature = "dual-bank") && !pac::FLASH.optr().read().dbank() { panic!("Embassy is configured as dual-bank, but the hardware is running in single-bank mode. Change the hardware by changing the dbank value in the user option bytes or configure embassy to use single-bank config"); } } #[cfg(all(bank_setup_configurable, flash_g0x1))] pub(crate) fn check_bank_setup() { if cfg!(feature = "single-bank") && pac::FLASH.optr().read().dual_bank() { panic!("Embassy is configured as single-bank, but the hardware is running in dual-bank mode. Change the hardware by changing the dual_bank value in the user option bytes or configure embassy to use dual-bank config"); } if cfg!(feature = "dual-bank") && !pac::FLASH.optr().read().dual_bank() { panic!("Embassy is configured as dual-bank, but the hardware is running in single-bank mode. Change the hardware by changing the dual_bank value in the user option bytes or configure embassy to use single-bank config"); } }