//! Crypto Accelerator (CRYP) use core::cmp::min; use core::marker::PhantomData; use embassy_hal_internal::{into_ref, PeripheralRef}; use crate::pac; use crate::peripherals::CRYP; use crate::rcc::sealed::RccPeripheral; use crate::{interrupt, peripherals, Peripheral}; const DES_BLOCK_SIZE: usize = 8; // 64 bits const AES_BLOCK_SIZE: usize = 16; // 128 bits /// This trait encapsulates all cipher-specific behavior/ pub trait Cipher<'c> { /// Processing block size. Determined by the processor and the algorithm. const BLOCK_SIZE: usize; /// Indicates whether the cipher requires the application to provide padding. /// If `true`, no partial blocks will be accepted (a panic will occur). const REQUIRES_PADDING: bool = false; /// Returns the symmetric key. fn key(&self) -> &[u8]; /// Returns the initialization vector. fn iv(&self) -> &[u8]; /// Sets the processor algorithm mode according to the associated cipher. fn set_algomode(&self, p: &pac::cryp::Cryp); /// Performs any key preparation within the processor, if necessary. fn prepare_key(&self, _p: &pac::cryp::Cryp) {} /// Performs any cipher-specific initialization. fn init_phase(&self, _p: &pac::cryp::Cryp) {} /// Called prior to processing the last data block for cipher-specific operations. fn pre_final_block(&self, _p: &pac::cryp::Cryp, _dir: Direction) -> [u32; 4] { return [0; 4]; } /// Called after processing the last data block for cipher-specific operations. fn post_final_block( &self, _p: &pac::cryp::Cryp, _dir: Direction, _int_data: &mut [u8; AES_BLOCK_SIZE], _temp1: [u32; 4], _padding_mask: [u8; 16], ) { } /// Called prior to processing the first associated data block for cipher-specific operations. fn get_header_block(&self) -> &[u8] { return [0; 0].as_slice(); } } /// This trait enables restriction of ciphers to specific key sizes. pub trait CipherSized {} /// This trait enables restriction of a header phase to authenticated ciphers only. pub trait CipherAuthenticated {} /// AES-ECB Cipher Mode pub struct AesEcb<'c, const KEY_SIZE: usize> { iv: &'c [u8; 0], key: &'c [u8; KEY_SIZE], } impl<'c, const KEY_SIZE: usize> AesEcb<'c, KEY_SIZE> { /// Constructs a new AES-ECB cipher for a cryptographic operation. pub fn new(key: &'c [u8; KEY_SIZE]) -> Self { return Self { key: key, iv: &[0; 0] }; } } impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesEcb<'c, KEY_SIZE> { const BLOCK_SIZE: usize = AES_BLOCK_SIZE; const REQUIRES_PADDING: bool = true; fn key(&self) -> &'c [u8] { self.key } fn iv(&self) -> &'c [u8] { self.iv } fn prepare_key(&self, p: &pac::cryp::Cryp) { p.cr().modify(|w| w.set_algomode0(7)); p.cr().modify(|w| w.set_algomode3(false)); p.cr().modify(|w| w.set_crypen(true)); while p.sr().read().busy() {} } fn set_algomode(&self, p: &pac::cryp::Cryp) { p.cr().modify(|w| w.set_algomode0(4)); p.cr().modify(|w| w.set_algomode3(false)); } } impl<'c> CipherSized for AesEcb<'c, { 128 / 8 }> {} impl<'c> CipherSized for AesEcb<'c, { 192 / 8 }> {} impl<'c> CipherSized for AesEcb<'c, { 256 / 8 }> {} /// AES-CBC Cipher Mode pub struct AesCbc<'c, const KEY_SIZE: usize> { iv: &'c [u8; 16], key: &'c [u8; KEY_SIZE], } impl<'c, const KEY_SIZE: usize> AesCbc<'c, KEY_SIZE> { /// Constructs a new AES-CBC cipher for a cryptographic operation. pub fn new(key: &'c [u8; KEY_SIZE], iv: &'c [u8; 16]) -> Self { return Self { key: key, iv: iv }; } } impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesCbc<'c, KEY_SIZE> { const BLOCK_SIZE: usize = AES_BLOCK_SIZE; const REQUIRES_PADDING: bool = true; fn key(&self) -> &'c [u8] { self.key } fn iv(&self) -> &'c [u8] { self.iv } fn prepare_key(&self, p: &pac::cryp::Cryp) { p.cr().modify(|w| w.set_algomode0(7)); p.cr().modify(|w| w.set_algomode3(false)); p.cr().modify(|w| w.set_crypen(true)); while p.sr().read().busy() {} } fn set_algomode(&self, p: &pac::cryp::Cryp) { p.cr().modify(|w| w.set_algomode0(5)); p.cr().modify(|w| w.set_algomode3(false)); } } impl<'c> CipherSized for AesCbc<'c, { 128 / 8 }> {} impl<'c> CipherSized for AesCbc<'c, { 192 / 8 }> {} impl<'c> CipherSized for AesCbc<'c, { 256 / 8 }> {} /// AES-CTR Cipher Mode pub struct AesCtr<'c, const KEY_SIZE: usize> { iv: &'c [u8; 16], key: &'c [u8; KEY_SIZE], } impl<'c, const KEY_SIZE: usize> AesCtr<'c, KEY_SIZE> { /// Constructs a new AES-CTR cipher for a cryptographic operation. pub fn new(key: &'c [u8; KEY_SIZE], iv: &'c [u8; 16]) -> Self { return Self { key: key, iv: iv }; } } impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesCtr<'c, KEY_SIZE> { const BLOCK_SIZE: usize = AES_BLOCK_SIZE; fn key(&self) -> &'c [u8] { self.key } fn iv(&self) -> &'c [u8] { self.iv } fn set_algomode(&self, p: &pac::cryp::Cryp) { p.cr().modify(|w| w.set_algomode0(6)); p.cr().modify(|w| w.set_algomode3(false)); } } impl<'c> CipherSized for AesCtr<'c, { 128 / 8 }> {} impl<'c> CipherSized for AesCtr<'c, { 192 / 8 }> {} impl<'c> CipherSized for AesCtr<'c, { 256 / 8 }> {} ///AES-GCM Cipher Mode pub struct AesGcm<'c, const KEY_SIZE: usize> { iv: [u8; 16], key: &'c [u8; KEY_SIZE], } impl<'c, const KEY_SIZE: usize> AesGcm<'c, KEY_SIZE> { /// Constucts a new AES-GCM cipher for a cryptographic operation. pub fn new(key: &'c [u8; KEY_SIZE], iv: &'c [u8; 12]) -> Self { let mut new_gcm = Self { key: key, iv: [0; 16] }; new_gcm.iv[..12].copy_from_slice(iv); new_gcm.iv[15] = 2; new_gcm } } impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesGcm<'c, KEY_SIZE> { const BLOCK_SIZE: usize = AES_BLOCK_SIZE; fn key(&self) -> &'c [u8] { self.key } fn iv(&self) -> &[u8] { self.iv.as_slice() } fn set_algomode(&self, p: &pac::cryp::Cryp) { p.cr().modify(|w| w.set_algomode0(0)); p.cr().modify(|w| w.set_algomode3(true)); } fn init_phase(&self, p: &pac::cryp::Cryp) { p.cr().modify(|w| w.set_gcm_ccmph(0)); p.cr().modify(|w| w.set_crypen(true)); while p.cr().read().crypen() {} } fn pre_final_block(&self, p: &pac::cryp::Cryp, dir: Direction) -> [u32; 4] { //Handle special GCM partial block process. if dir == Direction::Encrypt { p.cr().modify(|w| w.set_crypen(false)); p.cr().modify(|w| w.set_algomode3(false)); p.cr().modify(|w| w.set_algomode0(6)); let iv1r = p.csgcmccmr(7).read() - 1; p.init(1).ivrr().write_value(iv1r); p.cr().modify(|w| w.set_crypen(true)); } [0; 4] } fn post_final_block( &self, p: &pac::cryp::Cryp, dir: Direction, int_data: &mut [u8; AES_BLOCK_SIZE], _temp1: [u32; 4], padding_mask: [u8; AES_BLOCK_SIZE], ) { if dir == Direction::Encrypt { //Handle special GCM partial block process. p.cr().modify(|w| w.set_crypen(false)); p.cr().modify(|w| w.set_algomode3(true)); p.cr().modify(|w| w.set_algomode0(0)); for i in 0..AES_BLOCK_SIZE { int_data[i] = int_data[i] & padding_mask[i]; } p.cr().modify(|w| w.set_crypen(true)); p.cr().modify(|w| w.set_gcm_ccmph(3)); let mut index = 0; let end_index = Self::BLOCK_SIZE; while index < end_index { let mut in_word: [u8; 4] = [0; 4]; in_word.copy_from_slice(&int_data[index..index + 4]); p.din().write_value(u32::from_ne_bytes(in_word)); index += 4; } for _ in 0..4 { p.dout().read(); } } } } impl<'c> CipherSized for AesGcm<'c, { 128 / 8 }> {} impl<'c> CipherSized for AesGcm<'c, { 192 / 8 }> {} impl<'c> CipherSized for AesGcm<'c, { 256 / 8 }> {} impl<'c, const KEY_SIZE: usize> CipherAuthenticated for AesGcm<'c, KEY_SIZE> {} /// AES-GMAC Cipher Mode pub struct AesGmac<'c, const KEY_SIZE: usize> { iv: [u8; 16], key: &'c [u8; KEY_SIZE], } impl<'c, const KEY_SIZE: usize> AesGmac<'c, KEY_SIZE> { /// Constructs a new AES-GMAC cipher for a cryptographic operation. pub fn new(key: &'c [u8; KEY_SIZE], iv: &'c [u8; 12]) -> Self { let mut new_gmac = Self { key: key, iv: [0; 16] }; new_gmac.iv[..12].copy_from_slice(iv); new_gmac.iv[15] = 2; new_gmac } } impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesGmac<'c, KEY_SIZE> { const BLOCK_SIZE: usize = AES_BLOCK_SIZE; fn key(&self) -> &'c [u8] { self.key } fn iv(&self) -> &[u8] { self.iv.as_slice() } fn set_algomode(&self, p: &pac::cryp::Cryp) { p.cr().modify(|w| w.set_algomode0(0)); p.cr().modify(|w| w.set_algomode3(true)); } fn init_phase(&self, p: &pac::cryp::Cryp) { p.cr().modify(|w| w.set_gcm_ccmph(0)); p.cr().modify(|w| w.set_crypen(true)); while p.cr().read().crypen() {} } fn pre_final_block(&self, p: &pac::cryp::Cryp, dir: Direction) -> [u32; 4] { //Handle special GCM partial block process. if dir == Direction::Encrypt { p.cr().modify(|w| w.set_crypen(false)); p.cr().modify(|w| w.set_algomode3(false)); p.cr().modify(|w| w.set_algomode0(6)); let iv1r = p.csgcmccmr(7).read() - 1; p.init(1).ivrr().write_value(iv1r); p.cr().modify(|w| w.set_crypen(true)); } [0; 4] } fn post_final_block( &self, p: &pac::cryp::Cryp, dir: Direction, int_data: &mut [u8; AES_BLOCK_SIZE], _temp1: [u32; 4], padding_mask: [u8; AES_BLOCK_SIZE], ) { if dir == Direction::Encrypt { //Handle special GCM partial block process. p.cr().modify(|w| w.set_crypen(false)); p.cr().modify(|w| w.set_algomode3(true)); p.cr().modify(|w| w.set_algomode0(0)); for i in 0..AES_BLOCK_SIZE { int_data[i] = int_data[i] & padding_mask[i]; } p.cr().modify(|w| w.set_crypen(true)); p.cr().modify(|w| w.set_gcm_ccmph(3)); let mut index = 0; let end_index = Self::BLOCK_SIZE; while index < end_index { let mut in_word: [u8; 4] = [0; 4]; in_word.copy_from_slice(&int_data[index..index + 4]); p.din().write_value(u32::from_ne_bytes(in_word)); index += 4; } for _ in 0..4 { p.dout().read(); } } } } impl<'c> CipherSized for AesGmac<'c, { 128 / 8 }> {} impl<'c> CipherSized for AesGmac<'c, { 192 / 8 }> {} impl<'c> CipherSized for AesGmac<'c, { 256 / 8 }> {} impl<'c, const KEY_SIZE: usize> CipherAuthenticated for AesGmac<'c, KEY_SIZE> {} pub struct AesCcm<'c, const KEY_SIZE: usize> { key: &'c [u8; KEY_SIZE], aad_header: [u8; 6], aad_header_len: usize, block0: [u8; 16], ctr: [u8; 16], } impl<'c, const KEY_SIZE: usize> AesCcm<'c, KEY_SIZE> { pub fn new(key: &'c [u8; KEY_SIZE], iv: &'c [u8], aad_len: usize, payload_len: usize, tag_len: u8) -> Self { if (iv.len()) > 13 || (iv.len() < 7) { panic!("CCM IV length must be 7-13 bytes."); } if (tag_len < 4) || (tag_len > 16) { panic!("Tag length must be between 4 and 16 bytes."); } if tag_len % 2 > 0 { panic!("Tag length must be a multiple of 2 bytes."); } let mut aad_header: [u8; 6] = [0; 6]; let mut aad_header_len = 0; let mut block0: [u8; 16] = [0; 16]; if aad_len != 0 { if aad_len < 65280 { aad_header[0] = (aad_len >> 8) as u8 & 0xFF; aad_header[1] = aad_len as u8 & 0xFF; aad_header_len = 2; } else { aad_header[0] = 0xFF; aad_header[1] = 0xFE; let aad_len_bytes: [u8; 4] = aad_len.to_be_bytes(); aad_header[2] = aad_len_bytes[0]; aad_header[3] = aad_len_bytes[1]; aad_header[4] = aad_len_bytes[2]; aad_header[5] = aad_len_bytes[3]; aad_header_len = 6; } } let total_aad_len = aad_header_len + aad_len; let mut aad_padding_len = 16 - (total_aad_len % 16); if aad_padding_len == 16 { aad_padding_len = 0; } aad_header_len += aad_padding_len; let total_aad_len_padded = aad_header_len + aad_len; if total_aad_len_padded > 0 { block0[0] = 0x40; } block0[0] |= (((tag_len - 2) >> 1) & 0x07) << 3; block0[0] |= ((15 - (iv.len() as u8)) - 1) & 0x07; block0[1..1 + iv.len()].copy_from_slice(iv); let payload_len_bytes: [u8; 4] = payload_len.to_be_bytes(); if iv.len() <= 11 { block0[12] = payload_len_bytes[0]; } else if payload_len_bytes[0] > 0 { panic!("Message is too large for given IV size."); } if iv.len() <= 12 { block0[13] = payload_len_bytes[1]; } else if payload_len_bytes[1] > 0 { panic!("Message is too large for given IV size."); } block0[14] = payload_len_bytes[2]; block0[15] = payload_len_bytes[3]; let mut ctr: [u8; 16] = [0; 16]; ctr[0] = block0[0] & 0x07; ctr[1..1 + iv.len()].copy_from_slice(&block0[1..1 + iv.len()]); ctr[15] = 0x01; return Self { key: key, aad_header: aad_header, aad_header_len: aad_header_len, block0: block0, ctr: ctr, }; } } impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesCcm<'c, KEY_SIZE> { const BLOCK_SIZE: usize = AES_BLOCK_SIZE; fn key(&self) -> &'c [u8] { self.key } fn iv(&self) -> &[u8] { self.ctr.as_slice() } fn set_algomode(&self, p: &pac::cryp::Cryp) { p.cr().modify(|w| w.set_algomode0(1)); p.cr().modify(|w| w.set_algomode3(true)); } fn init_phase(&self, p: &pac::cryp::Cryp) { p.cr().modify(|w| w.set_gcm_ccmph(0)); let mut index = 0; let end_index = index + Self::BLOCK_SIZE; // Write block in while index < end_index { let mut in_word: [u8; 4] = [0; 4]; in_word.copy_from_slice(&self.block0[index..index + 4]); p.din().write_value(u32::from_ne_bytes(in_word)); index += 4; } p.cr().modify(|w| w.set_crypen(true)); while p.cr().read().crypen() {} } fn get_header_block(&self) -> &[u8] { return &self.aad_header[0..self.aad_header_len]; } fn pre_final_block(&self, p: &pac::cryp::Cryp, dir: Direction) -> [u32; 4] { //Handle special CCM partial block process. let mut temp1 = [0; 4]; if dir == Direction::Decrypt { p.cr().modify(|w| w.set_crypen(false)); let iv1temp = p.init(1).ivrr().read(); temp1[0] = p.csgcmccmr(0).read().swap_bytes(); temp1[1] = p.csgcmccmr(1).read().swap_bytes(); temp1[2] = p.csgcmccmr(2).read().swap_bytes(); temp1[3] = p.csgcmccmr(3).read().swap_bytes(); p.init(1).ivrr().write_value(iv1temp); p.cr().modify(|w| w.set_algomode3(false)); p.cr().modify(|w| w.set_algomode0(6)); p.cr().modify(|w| w.set_crypen(true)); } return temp1; } fn post_final_block( &self, p: &pac::cryp::Cryp, dir: Direction, int_data: &mut [u8; AES_BLOCK_SIZE], temp1: [u32; 4], padding_mask: [u8; 16], ) { if dir == Direction::Decrypt { //Handle special CCM partial block process. let mut temp2 = [0; 4]; temp2[0] = p.csgcmccmr(0).read().swap_bytes(); temp2[1] = p.csgcmccmr(1).read().swap_bytes(); temp2[2] = p.csgcmccmr(2).read().swap_bytes(); temp2[3] = p.csgcmccmr(3).read().swap_bytes(); p.cr().modify(|w| w.set_algomode3(true)); p.cr().modify(|w| w.set_algomode0(1)); p.cr().modify(|w| w.set_gcm_ccmph(3)); // Header phase p.cr().modify(|w| w.set_gcm_ccmph(1)); for i in 0..AES_BLOCK_SIZE { int_data[i] = int_data[i] & padding_mask[i]; } let mut in_data: [u32; 4] = [0; 4]; for i in 0..in_data.len() { let mut int_bytes: [u8; 4] = [0; 4]; int_bytes.copy_from_slice(&int_data[(i * 4)..(i * 4) + 4]); let int_word = u32::from_le_bytes(int_bytes); in_data[i] = int_word; in_data[i] = in_data[i] ^ temp1[i] ^ temp2[i]; p.din().write_value(in_data[i]); } } } } impl<'c> CipherSized for AesCcm<'c, { 128 / 8 }> {} impl<'c> CipherSized for AesCcm<'c, { 192 / 8 }> {} impl<'c> CipherSized for AesCcm<'c, { 256 / 8 }> {} impl<'c, const KEY_SIZE: usize> CipherAuthenticated for AesCcm<'c, KEY_SIZE> {} /// Holds the state information for a cipher operation. /// Allows suspending/resuming of cipher operations. pub struct Context<'c, C: Cipher<'c> + CipherSized> { phantom_data: PhantomData<&'c C>, cipher: &'c C, dir: Direction, last_block_processed: bool, header_processed: bool, aad_complete: bool, cr: u32, iv: [u32; 4], csgcmccm: [u32; 8], csgcm: [u32; 8], header_len: u64, payload_len: u64, aad_buffer: [u8; 16], aad_buffer_len: usize, } /// Selects whether the crypto processor operates in encryption or decryption mode. #[derive(PartialEq, Clone, Copy)] pub enum Direction { /// Encryption mode Encrypt, /// Decryption mode Decrypt, } /// Crypto Accelerator Driver pub struct Cryp<'d, T: Instance> { _peripheral: PeripheralRef<'d, T>, } impl<'d, T: Instance> Cryp<'d, T> { /// Create a new CRYP driver. pub fn new(peri: impl Peripheral
+ 'd) -> Self { CRYP::enable_and_reset(); into_ref!(peri); let instance = Self { _peripheral: peri }; instance } /// Start a new cipher operation. /// Key size must be 128, 192, or 256 bits. /// Initialization vector must only be supplied if necessary. /// Panics if there is any mismatch in parameters, such as an incorrect IV length or invalid mode. pub fn start<'c, C: Cipher<'c> + CipherSized>(&self, cipher: &'c C, dir: Direction) -> Context<'c, C> { let mut ctx: Context<'c, C> = Context { dir, last_block_processed: false, cr: 0, iv: [0; 4], csgcmccm: [0; 8], csgcm: [0; 8], aad_complete: false, header_len: 0, payload_len: 0, cipher: cipher, phantom_data: PhantomData, header_processed: false, aad_buffer: [0; 16], aad_buffer_len: 0, }; T::regs().cr().modify(|w| w.set_crypen(false)); let key = ctx.cipher.key(); if key.len() == (128 / 8) { T::regs().cr().modify(|w| w.set_keysize(0)); } else if key.len() == (192 / 8) { T::regs().cr().modify(|w| w.set_keysize(1)); } else if key.len() == (256 / 8) { T::regs().cr().modify(|w| w.set_keysize(2)); } self.load_key(key); // Set data type to 8-bit. This will match software implementations. T::regs().cr().modify(|w| w.set_datatype(2)); ctx.cipher.prepare_key(&T::regs()); ctx.cipher.set_algomode(&T::regs()); // Set encrypt/decrypt if dir == Direction::Encrypt { T::regs().cr().modify(|w| w.set_algodir(false)); } else { T::regs().cr().modify(|w| w.set_algodir(true)); } // Load the IV into the registers. let iv = ctx.cipher.iv(); let mut full_iv: [u8; 16] = [0; 16]; full_iv[0..iv.len()].copy_from_slice(iv); let mut iv_idx = 0; let mut iv_word: [u8; 4] = [0; 4]; iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]); iv_idx += 4; T::regs().init(0).ivlr().write_value(u32::from_be_bytes(iv_word)); iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]); iv_idx += 4; T::regs().init(0).ivrr().write_value(u32::from_be_bytes(iv_word)); iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]); iv_idx += 4; T::regs().init(1).ivlr().write_value(u32::from_be_bytes(iv_word)); iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]); T::regs().init(1).ivrr().write_value(u32::from_be_bytes(iv_word)); // Flush in/out FIFOs T::regs().cr().modify(|w| w.fflush()); ctx.cipher.init_phase(&T::regs()); self.store_context(&mut ctx); ctx } /// Controls the header phase of cipher processing. /// This function is only valid for GCM, CCM, and GMAC modes. /// It only needs to be called if using one of these modes and there is associated data. /// All AAD must be supplied to this function prior to starting the payload phase with `payload_blocking`. /// The AAD must be supplied in multiples of the block size (128 bits), except when supplying the last block. /// When supplying the last block of AAD, `last_aad_block` must be `true`. pub fn aad_blocking<'c, C: Cipher<'c> + CipherSized + CipherAuthenticated>( &self, ctx: &mut Context<'c, C>, aad: &[u8], last_aad_block: bool, ) { self.load_context(ctx); // Perform checks for correctness. if ctx.aad_complete { panic!("Cannot update AAD after starting payload!") } ctx.header_len += aad.len() as u64; // Header phase T::regs().cr().modify(|w| w.set_crypen(false)); T::regs().cr().modify(|w| w.set_gcm_ccmph(1)); T::regs().cr().modify(|w| w.set_crypen(true)); // First write the header B1 block if not yet written. if !ctx.header_processed { ctx.header_processed = true; let header = ctx.cipher.get_header_block(); ctx.aad_buffer[0..header.len()].copy_from_slice(header); ctx.aad_buffer_len += header.len(); } // Fill the header block to make a full block. let len_to_copy = min(aad.len(), C::BLOCK_SIZE - ctx.aad_buffer_len); ctx.aad_buffer[ctx.aad_buffer_len..ctx.aad_buffer_len + len_to_copy].copy_from_slice(&aad[..len_to_copy]); ctx.aad_buffer_len += len_to_copy; ctx.aad_buffer[ctx.aad_buffer_len..].fill(0); let mut aad_len_remaining = aad.len() - len_to_copy; if ctx.aad_buffer_len < C::BLOCK_SIZE { // The buffer isn't full and this is the last buffer, so process it as is (already padded). if last_aad_block { let mut index = 0; let end_index = C::BLOCK_SIZE; // Write block in while index < end_index { let mut in_word: [u8; 4] = [0; 4]; in_word.copy_from_slice(&ctx.aad_buffer[index..index + 4]); T::regs().din().write_value(u32::from_ne_bytes(in_word)); index += 4; } // Block until input FIFO is empty. while !T::regs().sr().read().ifem() {} // Switch to payload phase. ctx.aad_complete = true; T::regs().cr().modify(|w| w.set_crypen(false)); T::regs().cr().modify(|w| w.set_gcm_ccmph(2)); T::regs().cr().modify(|w| w.fflush()); } else { // Just return because we don't yet have a full block to process. return; } } else { // Load the full block from the buffer. let mut index = 0; let end_index = C::BLOCK_SIZE; // Write block in while index < end_index { let mut in_word: [u8; 4] = [0; 4]; in_word.copy_from_slice(&aad[index..index + 4]); T::regs().din().write_value(u32::from_ne_bytes(in_word)); index += 4; } // Block until input FIFO is empty. while !T::regs().sr().read().ifem() {} } // Handle a partial block that is passed in. ctx.aad_buffer_len = 0; let leftovers = aad_len_remaining % C::BLOCK_SIZE; ctx.aad_buffer[..leftovers].copy_from_slice(&aad[aad.len() - leftovers..aad.len()]); aad_len_remaining -= leftovers; assert_eq!(aad_len_remaining % C::BLOCK_SIZE, 0); // Load full data blocks into core. let num_full_blocks = aad_len_remaining / C::BLOCK_SIZE; for _ in 0..num_full_blocks { let mut index = len_to_copy; let end_index = len_to_copy + C::BLOCK_SIZE; // Write block in while index < end_index { let mut in_word: [u8; 4] = [0; 4]; in_word.copy_from_slice(&aad[index..index + 4]); T::regs().din().write_value(u32::from_ne_bytes(in_word)); index += 4; } // Block until input FIFO is empty. while !T::regs().sr().read().ifem() {} } if last_aad_block { // Switch to payload phase. ctx.aad_complete = true; T::regs().cr().modify(|w| w.set_crypen(false)); T::regs().cr().modify(|w| w.set_gcm_ccmph(2)); T::regs().cr().modify(|w| w.fflush()); } self.store_context(ctx); } /// Performs encryption/decryption on the provided context. /// The context determines algorithm, mode, and state of the crypto accelerator. /// When the last piece of data is supplied, `last_block` should be `true`. /// This function panics under various mismatches of parameters. /// Input and output buffer lengths must match. /// Data must be a multiple of block size (128-bits for AES, 64-bits for DES) for CBC and ECB modes. /// Padding or ciphertext stealing must be managed by the application for these modes. /// Data must also be a multiple of block size unless `last_block` is `true`. pub fn payload_blocking<'c, C: Cipher<'c> + CipherSized>( &self, ctx: &mut Context<'c, C>, input: &[u8], output: &mut [u8], last_block: bool, ) { self.load_context(ctx); let last_block_remainder = input.len() % C::BLOCK_SIZE; // Perform checks for correctness. if !ctx.aad_complete && ctx.header_len > 0 { panic!("Additional associated data must be processed first!"); } else if !ctx.aad_complete { ctx.aad_complete = true; T::regs().cr().modify(|w| w.set_crypen(false)); T::regs().cr().modify(|w| w.set_gcm_ccmph(2)); T::regs().cr().modify(|w| w.fflush()); T::regs().cr().modify(|w| w.set_crypen(true)); } if ctx.last_block_processed { panic!("The last block has already been processed!"); } if input.len() != output.len() { panic!("Output buffer length must match input length."); } if !last_block { if last_block_remainder != 0 { panic!("Input length must be a multiple of {} bytes.", C::BLOCK_SIZE); } } if C::REQUIRES_PADDING { if last_block_remainder != 0 { panic!("Input must be a multiple of {} bytes in ECB and CBC modes. Consider padding or ciphertext stealing.", C::BLOCK_SIZE); } } if last_block { ctx.last_block_processed = true; } // Load data into core, block by block. let num_full_blocks = input.len() / C::BLOCK_SIZE; for block in 0..num_full_blocks { let mut index = block * C::BLOCK_SIZE; let end_index = index + C::BLOCK_SIZE; // Write block in while index < end_index { let mut in_word: [u8; 4] = [0; 4]; in_word.copy_from_slice(&input[index..index + 4]); T::regs().din().write_value(u32::from_ne_bytes(in_word)); index += 4; } let mut index = block * C::BLOCK_SIZE; let end_index = index + C::BLOCK_SIZE; // Block until there is output to read. while !T::regs().sr().read().ofne() {} // Read block out while index < end_index { let out_word: u32 = T::regs().dout().read(); output[index..index + 4].copy_from_slice(u32::to_ne_bytes(out_word).as_slice()); index += 4; } } // Handle the final block, which is incomplete. if last_block_remainder > 0 { let temp1 = ctx.cipher.pre_final_block(&T::regs(), ctx.dir); let mut intermediate_data: [u8; AES_BLOCK_SIZE] = [0; AES_BLOCK_SIZE]; let mut last_block: [u8; AES_BLOCK_SIZE] = [0; AES_BLOCK_SIZE]; last_block[..last_block_remainder].copy_from_slice(&input[input.len() - last_block_remainder..input.len()]); let mut index = 0; let end_index = C::BLOCK_SIZE; // Write block in while index < end_index { let mut in_word: [u8; 4] = [0; 4]; in_word.copy_from_slice(&last_block[index..index + 4]); T::regs().din().write_value(u32::from_ne_bytes(in_word)); index += 4; } let mut index = 0; let end_index = C::BLOCK_SIZE; // Block until there is output to read. while !T::regs().sr().read().ofne() {} // Read block out while index < end_index { let out_word: u32 = T::regs().dout().read(); intermediate_data[index..index + 4].copy_from_slice(u32::to_ne_bytes(out_word).as_slice()); index += 4; } // Handle the last block depending on mode. let output_len = output.len(); output[output_len - last_block_remainder..output_len] .copy_from_slice(&intermediate_data[0..last_block_remainder]); let mut mask: [u8; 16] = [0; 16]; mask[..last_block_remainder].fill(0xFF); ctx.cipher .post_final_block(&T::regs(), ctx.dir, &mut intermediate_data, temp1, mask); } ctx.payload_len += input.len() as u64; self.store_context(ctx); } /// This function only needs to be called for GCM, CCM, and GMAC modes to /// generate an authentication tag. pub fn finish_blocking<'c, C: Cipher<'c> + CipherSized + CipherAuthenticated>( &self, mut ctx: Context<'c, C>, tag: &mut [u8; 16], ) { self.load_context(&mut ctx); T::regs().cr().modify(|w| w.set_crypen(false)); T::regs().cr().modify(|w| w.set_gcm_ccmph(3)); T::regs().cr().modify(|w| w.set_crypen(true)); let headerlen1: u32 = (ctx.header_len >> 32) as u32; let headerlen2: u32 = ctx.header_len as u32; let payloadlen1: u32 = (ctx.payload_len >> 32) as u32; let payloadlen2: u32 = ctx.payload_len as u32; T::regs().din().write_value(headerlen1.swap_bytes()); T::regs().din().write_value(headerlen2.swap_bytes()); T::regs().din().write_value(payloadlen1.swap_bytes()); T::regs().din().write_value(payloadlen2.swap_bytes()); while !T::regs().sr().read().ofne() {} tag[0..4].copy_from_slice(T::regs().dout().read().to_ne_bytes().as_slice()); tag[4..8].copy_from_slice(T::regs().dout().read().to_ne_bytes().as_slice()); tag[8..12].copy_from_slice(T::regs().dout().read().to_ne_bytes().as_slice()); tag[12..16].copy_from_slice(T::regs().dout().read().to_ne_bytes().as_slice()); T::regs().cr().modify(|w| w.set_crypen(false)); } fn load_key(&self, key: &[u8]) { // Load the key into the registers. let mut keyidx = 0; let mut keyword: [u8; 4] = [0; 4]; let keylen = key.len() * 8; if keylen > 192 { keyword.copy_from_slice(&key[keyidx..keyidx + 4]); keyidx += 4; T::regs().key(0).klr().write_value(u32::from_be_bytes(keyword)); keyword.copy_from_slice(&key[keyidx..keyidx + 4]); keyidx += 4; T::regs().key(0).krr().write_value(u32::from_be_bytes(keyword)); } if keylen > 128 { keyword.copy_from_slice(&key[keyidx..keyidx + 4]); keyidx += 4; T::regs().key(1).klr().write_value(u32::from_be_bytes(keyword)); keyword.copy_from_slice(&key[keyidx..keyidx + 4]); keyidx += 4; T::regs().key(1).krr().write_value(u32::from_be_bytes(keyword)); } if keylen > 64 { keyword.copy_from_slice(&key[keyidx..keyidx + 4]); keyidx += 4; T::regs().key(2).klr().write_value(u32::from_be_bytes(keyword)); keyword.copy_from_slice(&key[keyidx..keyidx + 4]); keyidx += 4; T::regs().key(2).krr().write_value(u32::from_be_bytes(keyword)); } keyword.copy_from_slice(&key[keyidx..keyidx + 4]); keyidx += 4; T::regs().key(3).klr().write_value(u32::from_be_bytes(keyword)); keyword.copy_from_slice(&key[keyidx..keyidx + 4]); T::regs().key(3).krr().write_value(u32::from_be_bytes(keyword)); } fn store_context<'c, C: Cipher<'c> + CipherSized>(&self, ctx: &mut Context<'c, C>) { // Wait for data block processing to finish. while !T::regs().sr().read().ifem() {} while T::regs().sr().read().ofne() {} while T::regs().sr().read().busy() {} // Disable crypto processor. T::regs().cr().modify(|w| w.set_crypen(false)); // Save the peripheral state. ctx.cr = T::regs().cr().read().0; ctx.iv[0] = T::regs().init(0).ivlr().read(); ctx.iv[1] = T::regs().init(0).ivrr().read(); ctx.iv[2] = T::regs().init(1).ivlr().read(); ctx.iv[3] = T::regs().init(1).ivrr().read(); for i in 0..8 { ctx.csgcmccm[i] = T::regs().csgcmccmr(i).read(); ctx.csgcm[i] = T::regs().csgcmr(i).read(); } } fn load_context<'c, C: Cipher<'c> + CipherSized>(&self, ctx: &Context<'c, C>) { // Reload state registers. T::regs().cr().write(|w| w.0 = ctx.cr); T::regs().init(0).ivlr().write_value(ctx.iv[0]); T::regs().init(0).ivrr().write_value(ctx.iv[1]); T::regs().init(1).ivlr().write_value(ctx.iv[2]); T::regs().init(1).ivrr().write_value(ctx.iv[3]); for i in 0..8 { T::regs().csgcmccmr(i).write_value(ctx.csgcmccm[i]); T::regs().csgcmr(i).write_value(ctx.csgcm[i]); } self.load_key(ctx.cipher.key()); // Prepare key if applicable. ctx.cipher.prepare_key(&T::regs()); T::regs().cr().write(|w| w.0 = ctx.cr); // Enable crypto processor. T::regs().cr().modify(|w| w.set_crypen(true)); } } pub(crate) mod sealed { use super::*; pub trait Instance { fn regs() -> pac::cryp::Cryp; } } /// CRYP instance trait. pub trait Instance: sealed::Instance + Peripheral
+ crate::rcc::RccPeripheral + 'static + Send { /// Interrupt for this CRYP instance. type Interrupt: interrupt::typelevel::Interrupt; } foreach_interrupt!( ($inst:ident, cryp, CRYP, GLOBAL, $irq:ident) => { impl Instance for peripherals::$inst { type Interrupt = crate::interrupt::typelevel::$irq; } impl sealed::Instance for peripherals::$inst { fn regs() -> crate::pac::cryp::Cryp { crate::pac::$inst } } }; );