#![no_main] #![no_std] // Tested on an STM32U5G9J-DK2 demo board using the on-board MX66LM1G45G flash memory // The flash is connected to the HSPI1 port as an OCTA-DTR device // // Use embassy-stm32 feature "stm32u5g9zj" and probe-rs chip "STM32U5G9ZJTxQ" use defmt::info; use embassy_executor::Spawner; use embassy_stm32::hspi::{ AddressSize, ChipSelectHighTime, DummyCycles, FIFOThresholdLevel, Hspi, HspiWidth, Instance, MemorySize, MemoryType, TransferConfig, WrapSize, }; use embassy_stm32::mode::Async; use embassy_stm32::rcc; use embassy_stm32::time::Hertz; use {defmt_rtt as _, panic_probe as _}; #[embassy_executor::main] async fn main(_spawner: Spawner) { info!("Start hspi_memory_mapped"); // RCC config let mut config = embassy_stm32::Config::default(); config.rcc.hse = Some(rcc::Hse { freq: Hertz(16_000_000), mode: rcc::HseMode::Oscillator, }); config.rcc.pll1 = Some(rcc::Pll { source: rcc::PllSource::HSE, prediv: rcc::PllPreDiv::DIV1, mul: rcc::PllMul::MUL10, divp: None, divq: None, divr: Some(rcc::PllDiv::DIV1), }); config.rcc.sys = rcc::Sysclk::PLL1_R; // 160 Mhz config.rcc.pll2 = Some(rcc::Pll { source: rcc::PllSource::HSE, prediv: rcc::PllPreDiv::DIV4, mul: rcc::PllMul::MUL66, divp: None, divq: Some(rcc::PllDiv::DIV2), divr: None, }); config.rcc.mux.hspi1sel = rcc::mux::Hspisel::PLL2_Q; // 132 MHz // Initialize peripherals let p = embassy_stm32::init(config); let flash_config = embassy_stm32::hspi::Config { fifo_threshold: FIFOThresholdLevel::_4Bytes, memory_type: MemoryType::Macronix, device_size: MemorySize::_1GiB, chip_select_high_time: ChipSelectHighTime::_2Cycle, free_running_clock: false, clock_mode: false, wrap_size: WrapSize::None, clock_prescaler: 0, sample_shifting: false, delay_hold_quarter_cycle: false, chip_select_boundary: 0, delay_block_bypass: false, max_transfer: 0, refresh: 0, }; let use_dma = true; info!("Testing flash in OCTA DTR mode and memory mapped mode"); let hspi = Hspi::new_octospi( p.HSPI1, p.PI3, p.PH10, p.PH11, p.PH12, p.PH13, p.PH14, p.PH15, p.PI0, p.PI1, p.PH9, p.PI2, p.GPDMA1_CH7, flash_config, ); let mut flash = OctaDtrFlashMemory::new(hspi).await; let flash_id = flash.read_id(); info!("FLASH ID: {=[u8]:x}", flash_id); let mut rd_buf = [0u8; 16]; flash.read_memory(0, &mut rd_buf, use_dma).await; info!("READ BUF: {=[u8]:#X}", rd_buf); flash.erase_sector(0).await; flash.read_memory(0, &mut rd_buf, use_dma).await; info!("READ BUF: {=[u8]:#X}", rd_buf); assert_eq!(rd_buf[0], 0xFF); assert_eq!(rd_buf[15], 0xFF); let mut wr_buf = [0u8; 16]; for i in 0..wr_buf.len() { wr_buf[i] = i as u8; } info!("WRITE BUF: {=[u8]:#X}", wr_buf); flash.write_memory(0, &wr_buf, use_dma).await; flash.read_memory(0, &mut rd_buf, use_dma).await; info!("READ BUF: {=[u8]:#X}", rd_buf); assert_eq!(rd_buf[0], 0x00); assert_eq!(rd_buf[15], 0x0F); flash.enable_mm().await; info!("Enabled memory mapped mode"); let first_u32 = unsafe { *(0xA0000000 as *const u32) }; info!("first_u32: 0x{=u32:X}", first_u32); assert_eq!(first_u32, 0x03020100); let second_u32 = unsafe { *(0xA0000004 as *const u32) }; assert_eq!(second_u32, 0x07060504); info!("second_u32: 0x{=u32:X}", second_u32); let first_u8 = unsafe { *(0xA0000000 as *const u8) }; assert_eq!(first_u8, 00); info!("first_u8: 0x{=u8:X}", first_u8); let second_u8 = unsafe { *(0xA0000001 as *const u8) }; assert_eq!(second_u8, 0x01); info!("second_u8: 0x{=u8:X}", second_u8); let third_u8 = unsafe { *(0xA0000002 as *const u8) }; assert_eq!(third_u8, 0x02); info!("third_u8: 0x{=u8:X}", third_u8); let fourth_u8 = unsafe { *(0xA0000003 as *const u8) }; assert_eq!(fourth_u8, 0x03); info!("fourth_u8: 0x{=u8:X}", fourth_u8); info!("DONE"); } // Custom implementation for MX66UW1G45G NOR flash memory from Macronix. // Chip commands are hardcoded as they depend on the chip used. // This implementation enables Octa I/O (OPI) and Double Transfer Rate (DTR) pub struct OctaDtrFlashMemory<'d, I: Instance> { hspi: Hspi<'d, I, Async>, } impl<'d, I: Instance> OctaDtrFlashMemory<'d, I> { const MEMORY_PAGE_SIZE: usize = 256; const CMD_READ_OCTA_DTR: u16 = 0xEE11; const CMD_PAGE_PROGRAM_OCTA_DTR: u16 = 0x12ED; const CMD_READ_ID_OCTA_DTR: u16 = 0x9F60; const CMD_RESET_ENABLE: u8 = 0x66; const CMD_RESET_ENABLE_OCTA_DTR: u16 = 0x6699; const CMD_RESET: u8 = 0x99; const CMD_RESET_OCTA_DTR: u16 = 0x9966; const CMD_WRITE_ENABLE: u8 = 0x06; const CMD_WRITE_ENABLE_OCTA_DTR: u16 = 0x06F9; const CMD_SECTOR_ERASE_OCTA_DTR: u16 = 0x21DE; const CMD_BLOCK_ERASE_OCTA_DTR: u16 = 0xDC23; const CMD_READ_SR: u8 = 0x05; const CMD_READ_SR_OCTA_DTR: u16 = 0x05FA; const CMD_READ_CR2: u8 = 0x71; const CMD_WRITE_CR2: u8 = 0x72; const CR2_REG1_ADDR: u32 = 0x00000000; const CR2_OCTA_DTR: u8 = 0x02; const CR2_REG3_ADDR: u32 = 0x00000300; const CR2_DC_6_CYCLES: u8 = 0x07; pub async fn new(hspi: Hspi<'d, I, Async>) -> Self { let mut memory = Self { hspi }; memory.reset_memory().await; memory.enable_octa_dtr().await; memory } async fn enable_octa_dtr(&mut self) { self.write_enable_spi().await; self.write_cr2_spi(Self::CR2_REG3_ADDR, Self::CR2_DC_6_CYCLES); self.write_enable_spi().await; self.write_cr2_spi(Self::CR2_REG1_ADDR, Self::CR2_OCTA_DTR); } pub async fn enable_mm(&mut self) { let read_config = TransferConfig { iwidth: HspiWidth::OCTO, instruction: Some(Self::CMD_READ_OCTA_DTR as u32), isize: AddressSize::_16Bit, idtr: true, adwidth: HspiWidth::OCTO, adsize: AddressSize::_32Bit, addtr: true, dwidth: HspiWidth::OCTO, ddtr: true, dummy: DummyCycles::_6, ..Default::default() }; let write_config = TransferConfig { iwidth: HspiWidth::OCTO, isize: AddressSize::_16Bit, idtr: true, adwidth: HspiWidth::OCTO, adsize: AddressSize::_32Bit, addtr: true, dwidth: HspiWidth::OCTO, ddtr: true, ..Default::default() }; self.hspi.enable_memory_mapped_mode(read_config, write_config).unwrap(); } async fn exec_command_spi(&mut self, cmd: u8) { let transaction = TransferConfig { iwidth: HspiWidth::SING, instruction: Some(cmd as u32), ..Default::default() }; info!("Excuting command: 0x{:X}", transaction.instruction.unwrap()); self.hspi.blocking_command(&transaction).unwrap(); } async fn exec_command_octa_dtr(&mut self, cmd: u16) { let transaction = TransferConfig { iwidth: HspiWidth::OCTO, instruction: Some(cmd as u32), isize: AddressSize::_16Bit, idtr: true, ..Default::default() }; info!("Excuting command: 0x{:X}", transaction.instruction.unwrap()); self.hspi.blocking_command(&transaction).unwrap(); } fn wait_write_finish_spi(&mut self) { while (self.read_sr_spi() & 0x01) != 0 {} } fn wait_write_finish_octa_dtr(&mut self) { while (self.read_sr_octa_dtr() & 0x01) != 0 {} } pub async fn reset_memory(&mut self) { // servono entrambi i comandi? self.exec_command_octa_dtr(Self::CMD_RESET_ENABLE_OCTA_DTR).await; self.exec_command_octa_dtr(Self::CMD_RESET_OCTA_DTR).await; self.exec_command_spi(Self::CMD_RESET_ENABLE).await; self.exec_command_spi(Self::CMD_RESET).await; self.wait_write_finish_spi(); } async fn write_enable_spi(&mut self) { self.exec_command_spi(Self::CMD_WRITE_ENABLE).await; } async fn write_enable_octa_dtr(&mut self) { self.exec_command_octa_dtr(Self::CMD_WRITE_ENABLE_OCTA_DTR).await; } pub fn read_id(&mut self) -> [u8; 3] { let mut buffer = [0; 6]; let transaction: TransferConfig = TransferConfig { iwidth: HspiWidth::OCTO, instruction: Some(Self::CMD_READ_ID_OCTA_DTR as u32), isize: AddressSize::_16Bit, idtr: true, adwidth: HspiWidth::OCTO, address: Some(0), adsize: AddressSize::_32Bit, addtr: true, dwidth: HspiWidth::OCTO, ddtr: true, dummy: DummyCycles::_5, ..Default::default() }; info!("Reading flash id: 0x{:X}", transaction.instruction.unwrap()); self.hspi.blocking_read(&mut buffer, transaction).unwrap(); [buffer[0], buffer[2], buffer[4]] } pub async fn read_memory(&mut self, addr: u32, buffer: &mut [u8], use_dma: bool) { let transaction = TransferConfig { iwidth: HspiWidth::OCTO, instruction: Some(Self::CMD_READ_OCTA_DTR as u32), isize: AddressSize::_16Bit, idtr: true, adwidth: HspiWidth::OCTO, address: Some(addr), adsize: AddressSize::_32Bit, addtr: true, dwidth: HspiWidth::OCTO, ddtr: true, dummy: DummyCycles::_6, ..Default::default() }; if use_dma { self.hspi.read(buffer, transaction).await.unwrap(); } else { self.hspi.blocking_read(buffer, transaction).unwrap(); } } async fn perform_erase_octa_dtr(&mut self, addr: u32, cmd: u16) { let transaction = TransferConfig { iwidth: HspiWidth::OCTO, instruction: Some(cmd as u32), isize: AddressSize::_16Bit, idtr: true, adwidth: HspiWidth::OCTO, address: Some(addr), adsize: AddressSize::_32Bit, addtr: true, ..Default::default() }; self.write_enable_octa_dtr().await; self.hspi.blocking_command(&transaction).unwrap(); self.wait_write_finish_octa_dtr(); } pub async fn erase_sector(&mut self, addr: u32) { info!("Erasing 4K sector at address: 0x{:X}", addr); self.perform_erase_octa_dtr(addr, Self::CMD_SECTOR_ERASE_OCTA_DTR).await; } pub async fn erase_block(&mut self, addr: u32) { info!("Erasing 64K block at address: 0x{:X}", addr); self.perform_erase_octa_dtr(addr, Self::CMD_BLOCK_ERASE_OCTA_DTR).await; } async fn write_page_octa_dtr(&mut self, addr: u32, buffer: &[u8], len: usize, use_dma: bool) { assert!( (len as u32 + (addr & 0x000000ff)) <= Self::MEMORY_PAGE_SIZE as u32, "write_page(): page write length exceeds page boundary (len = {}, addr = {:X}", len, addr ); let transaction = TransferConfig { iwidth: HspiWidth::OCTO, instruction: Some(Self::CMD_PAGE_PROGRAM_OCTA_DTR as u32), isize: AddressSize::_16Bit, idtr: true, adwidth: HspiWidth::OCTO, address: Some(addr), adsize: AddressSize::_32Bit, addtr: true, dwidth: HspiWidth::OCTO, ddtr: true, ..Default::default() }; self.write_enable_octa_dtr().await; if use_dma { self.hspi.write(buffer, transaction).await.unwrap(); } else { self.hspi.blocking_write(buffer, transaction).unwrap(); } self.wait_write_finish_octa_dtr(); } pub async fn write_memory(&mut self, addr: u32, buffer: &[u8], use_dma: bool) { let mut left = buffer.len(); let mut place = addr; let mut chunk_start = 0; while left > 0 { let max_chunk_size = Self::MEMORY_PAGE_SIZE - (place & 0x000000ff) as usize; let chunk_size = if left >= max_chunk_size { max_chunk_size } else { left }; let chunk = &buffer[chunk_start..(chunk_start + chunk_size)]; self.write_page_octa_dtr(place, chunk, chunk_size, use_dma).await; place += chunk_size as u32; left -= chunk_size; chunk_start += chunk_size; } } pub fn read_sr_spi(&mut self) -> u8 { let mut buffer = [0; 1]; let transaction: TransferConfig = TransferConfig { iwidth: HspiWidth::SING, instruction: Some(Self::CMD_READ_SR as u32), dwidth: HspiWidth::SING, ..Default::default() }; self.hspi.blocking_read(&mut buffer, transaction).unwrap(); // info!("Read MX66LM1G45G SR register: 0x{:x}", buffer[0]); buffer[0] } pub fn read_sr_octa_dtr(&mut self) -> u8 { let mut buffer = [0; 2]; let transaction: TransferConfig = TransferConfig { iwidth: HspiWidth::OCTO, instruction: Some(Self::CMD_READ_SR_OCTA_DTR as u32), isize: AddressSize::_16Bit, idtr: true, adwidth: HspiWidth::OCTO, address: Some(0), adsize: AddressSize::_32Bit, addtr: true, dwidth: HspiWidth::OCTO, ddtr: true, dummy: DummyCycles::_5, ..Default::default() }; self.hspi.blocking_read(&mut buffer, transaction).unwrap(); // info!("Read MX66LM1G45G SR register: 0x{:x}", buffer[0]); buffer[0] } pub fn read_cr2_spi(&mut self, addr: u32) -> u8 { let mut buffer = [0; 1]; let transaction: TransferConfig = TransferConfig { iwidth: HspiWidth::SING, instruction: Some(Self::CMD_READ_CR2 as u32), adwidth: HspiWidth::SING, address: Some(addr), adsize: AddressSize::_32Bit, dwidth: HspiWidth::SING, ..Default::default() }; self.hspi.blocking_read(&mut buffer, transaction).unwrap(); // info!("Read MX66LM1G45G CR2[0x{:X}] register: 0x{:x}", addr, buffer[0]); buffer[0] } pub fn write_cr2_spi(&mut self, addr: u32, value: u8) { let buffer = [value; 1]; let transaction: TransferConfig = TransferConfig { iwidth: HspiWidth::SING, instruction: Some(Self::CMD_WRITE_CR2 as u32), adwidth: HspiWidth::SING, address: Some(addr), adsize: AddressSize::_32Bit, dwidth: HspiWidth::SING, ..Default::default() }; self.hspi.blocking_write(&buffer, transaction).unwrap(); } }