// # Example of TSC (Touch Sensing Controller) using multiple pins from the same TSC group // // This example demonstrates how to use the Touch Sensing Controller (TSC) with multiple pins, including pins from the same TSC group, on an STM32L4R5ZI-P board. // // ## Key Concepts // // - Only one TSC pin for each TSC group can be acquired and read at a time. // - To control which channel pins are acquired and read, we must write a mask before initiating an acquisition. // - We organize channel pins into acquisition banks to manage this process efficiently. // - Each acquisition bank can contain exactly one channel pin per TSC group and will contain the relevant mask. // // ## This example demonstrates how to: // // 1. Configure multiple channel pins within a single TSC group // 2. Use the set_active_channels_bank method to switch between sets of different channels (acquisition banks) // 3. Read and interpret touch values from multiple channels in the same group // // ## Suggested physical setup on STM32L4R5ZI-P board: // // - Connect a 1000pF capacitor between pin PB12 (D19) and GND. This is the sampling capacitor for TSC group 1. // - Connect one end of a 1K resistor to pin PB13 (D18) and leave the other end loose. This will act as a touch sensor. // - Connect a 1000pF capacitor between pin PB4 (D25) and GND. This is the sampling capacitor for TSC group 2. // - Connect one end of a 1K resistor to pin PB5 (D22) and leave the other end loose. This will act as a touch sensor. // - Connect one end of another 1K resistor to pin PB6 (D71) and leave the other end loose. This will act as a touch sensor. // // ## Pin Configuration: // // The example uses pins from two TSC groups: // // - Group 1: // - PB12 (D19) as sampling capacitor (TSC group 1 IO1) // - PB13 (D18) as channel (TSC group 1 IO2) // - Group 2: // - PB4 (D25) as sampling capacitor (TSC group 2 IO1) // - PB5 (D22) as channel (TSC group 2 IO2) // - PB6 (D71) as channel (TSC group 2 IO3) // // The pins have been chosen for their convenient locations on the STM32L4R5ZI-P board, making it easy to add capacitors and resistors directly to the board without special connectors, breadboards, or soldering. // // ## Program Behavior: // // The program reads the designated channel pins and adjusts the LED (connected to PB14) blinking pattern based on which sensor(s) are touched: // // - No touch: LED off // - One sensor touched: Slow blinking // - Two sensors touched: Fast blinking // - Three sensors touched: LED constantly on // // ## Troubleshooting: // // - If touch is not detected, try adjusting the SENSOR_THRESHOLD value (currently set to 20). // - Experiment with different values for ct_pulse_high_length, ct_pulse_low_length, pulse_generator_prescaler, max_count_value, and discharge_delay to optimize sensitivity. // - Be aware that for some boards there will be overlapping concerns between some pins, for // example UART connection for the programmer to the MCU and a TSC pin. No errors or warning will // be emitted if you try to use such a pin for TSC, but you will get strange sensor readings. // // Note: Configuration values and sampling capacitor values have been determined experimentally. Optimal values may vary based on your specific hardware setup. Refer to the official STM32L4R5ZI-P datasheet and user manuals for more information on pin configurations and TSC functionality. #![no_std] #![no_main] use defmt::*; use embassy_stm32::gpio::{Level, Output, Speed}; use embassy_stm32::tsc::{self, *}; use embassy_stm32::{bind_interrupts, mode, peripherals}; use embassy_time::Timer; use {defmt_rtt as _, panic_probe as _}; bind_interrupts!(struct Irqs { TSC => InterruptHandler; }); const SENSOR_THRESHOLD: u16 = 20; async fn acquire_sensors( touch_controller: &mut Tsc<'static, peripherals::TSC, mode::Async>, tsc_acquisition_bank: &AcquisitionBank, ) { touch_controller.set_active_channels_bank(tsc_acquisition_bank); touch_controller.start(); touch_controller.pend_for_acquisition().await; touch_controller.discharge_io(true); let discharge_delay = 1; // ms Timer::after_millis(discharge_delay).await; } #[embassy_executor::main] async fn main(_spawner: embassy_executor::Spawner) { let device_config = embassy_stm32::Config::default(); let context = embassy_stm32::init(device_config); // ---------- initial configuration of TSC ---------- let mut g1: PinGroupWithRoles = PinGroupWithRoles::default(); g1.set_io1::(context.PB12); let sensor0 = g1.set_io2::(context.PB13); let mut g2: PinGroupWithRoles = PinGroupWithRoles::default(); g2.set_io1::(context.PB4); let sensor1 = g2.set_io2(context.PB5); let sensor2 = g2.set_io3(context.PB6); let config = tsc::Config { ct_pulse_high_length: ChargeTransferPulseCycle::_16, ct_pulse_low_length: ChargeTransferPulseCycle::_16, spread_spectrum: false, spread_spectrum_deviation: SSDeviation::new(2).unwrap(), spread_spectrum_prescaler: false, pulse_generator_prescaler: PGPrescalerDivider::_16, max_count_value: MaxCount::_255, io_default_mode: false, synchro_pin_polarity: false, acquisition_mode: false, max_count_interrupt: false, }; let pin_groups: PinGroups = PinGroups { g1: Some(g1.pin_group), g2: Some(g2.pin_group), ..Default::default() }; let mut touch_controller = tsc::Tsc::new_async(context.TSC, pin_groups, config, Irqs).unwrap(); // ---------- setting up acquisition banks ---------- // sensor0 and sensor1 belong to different TSC-groups, therefore we can acquire and // read them both in one go. let bank1 = touch_controller.create_acquisition_bank(AcquisitionBankPins { g1_pin: Some(sensor0), g2_pin: Some(sensor1), ..Default::default() }); // `sensor1` and `sensor2` belongs to the same TSC-group, therefore we must make sure to // acquire them one at the time. We do this by organizing them into different acquisition banks. let bank2 = touch_controller.create_acquisition_bank(AcquisitionBankPins { g2_pin: Some(sensor2), ..Default::default() }); // Check if TSC is ready if touch_controller.get_state() != State::Ready { crate::panic!("TSC not ready!"); } info!("TSC initialized successfully"); let mut led = Output::new(context.PB14, Level::High, Speed::Low); let mut led_state = false; loop { acquire_sensors(&mut touch_controller, &bank1).await; let readings1 = touch_controller.get_acquisition_bank_values(&bank1); acquire_sensors(&mut touch_controller, &bank2).await; let readings2 = touch_controller.get_acquisition_bank_values(&bank2); let mut touched_sensors_count = 0; for reading in readings1.iter().chain(readings2.iter()) { info!("{}", reading); if reading.sensor_value < SENSOR_THRESHOLD { touched_sensors_count += 1; } } match touched_sensors_count { 0 => { // No sensors touched, turn off the LED led.set_low(); led_state = false; } 1 => { // One sensor touched, blink slowly led_state = !led_state; if led_state { led.set_high(); } else { led.set_low(); } Timer::after_millis(200).await; } 2 => { // Two sensors touched, blink faster led_state = !led_state; if led_state { led.set_high(); } else { led.set_low(); } Timer::after_millis(50).await; } 3 => { // All three sensors touched, LED constantly on led.set_high(); led_state = true; } _ => crate::unreachable!(), // This case should never occur with 3 sensors } } }