stm32/hash: remove DMA generic param.

This commit is contained in:
Dario Nieuwenhuis 2025-03-25 21:57:37 +01:00
parent 9a0afa7bf4
commit db86aba841
4 changed files with 153 additions and 144 deletions

View File

@ -39,10 +39,10 @@ impl<'d> ChannelAndRequest<'d> {
Transfer::new_write(&mut self.channel, self.request, buf, peri_addr, options)
}
pub unsafe fn write_raw<'a, W: Word>(
pub unsafe fn write_raw<'a, MW: Word, PW: Word>(
&'a mut self,
buf: *const [W],
peri_addr: *mut W,
buf: *const [MW],
peri_addr: *mut PW,
options: TransferOptions,
) -> Transfer<'a> {
Transfer::new_write_raw(&mut self.channel, self.request, buf, peri_addr, options)

View File

@ -12,10 +12,12 @@ use embassy_hal_internal::{into_ref, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
use stm32_metapac::hash::regs::*;
use crate::dma::NoDma;
#[cfg(hash_v2)]
use crate::dma::Transfer;
use crate::dma::ChannelAndRequest;
use crate::interrupt::typelevel::Interrupt;
#[cfg(hash_v2)]
use crate::mode::Async;
use crate::mode::{Blocking, Mode};
use crate::peripherals::HASH;
use crate::{interrupt, pac, peripherals, rcc, Peripheral};
@ -116,24 +118,26 @@ pub struct Context<'c> {
type HmacKey<'k> = Option<&'k [u8]>;
/// HASH driver.
pub struct Hash<'d, T: Instance, D = NoDma> {
pub struct Hash<'d, T: Instance, M: Mode> {
_peripheral: PeripheralRef<'d, T>,
#[allow(dead_code)]
dma: PeripheralRef<'d, D>,
_phantom: PhantomData<M>,
#[cfg(hash_v2)]
dma: Option<ChannelAndRequest<'d>>,
}
impl<'d, T: Instance, D> Hash<'d, T, D> {
impl<'d, T: Instance> Hash<'d, T, Blocking> {
/// Instantiates, resets, and enables the HASH peripheral.
pub fn new(
pub fn new_blocking(
peripheral: impl Peripheral<P = T> + 'd,
dma: impl Peripheral<P = D> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
) -> Self {
rcc::enable_and_reset::<HASH>();
into_ref!(peripheral, dma);
into_ref!(peripheral);
let instance = Self {
_peripheral: peripheral,
dma: dma,
_phantom: PhantomData,
#[cfg(hash_v2)]
dma: None,
};
T::Interrupt::unpend();
@ -141,7 +145,9 @@ impl<'d, T: Instance, D> Hash<'d, T, D> {
instance
}
}
impl<'d, T: Instance, M: Mode> Hash<'d, T, M> {
/// Starts computation of a new hash and returns the saved peripheral state.
pub fn start<'c>(&mut self, algorithm: Algorithm, format: DataType, key: HmacKey<'c>) -> Context<'c> {
// Define a context for this new computation.
@ -282,14 +288,136 @@ impl<'d, T: Instance, D> Hash<'d, T, D> {
self.store_context(ctx);
}
/// Computes a digest for the given context.
/// The digest buffer must be large enough to accomodate a digest for the selected algorithm.
/// The largest returned digest size is 128 bytes for SHA-512.
/// Panics if the supplied digest buffer is too short.
pub fn finish_blocking<'c>(&mut self, mut ctx: Context<'c>, digest: &mut [u8]) -> usize {
// Restore the peripheral state.
self.load_context(&ctx);
// Hash the leftover bytes, if any.
self.accumulate_blocking(&ctx.buffer[0..ctx.buflen]);
ctx.buflen = 0;
//Start the digest calculation.
T::regs().str().write(|w| w.set_dcal(true));
// Load the HMAC key if provided.
if let Some(key) = ctx.key {
while !T::regs().sr().read().dinis() {}
self.accumulate_blocking(key);
T::regs().str().write(|w| w.set_dcal(true));
}
// Block until digest computation is complete.
while !T::regs().sr().read().dcis() {}
// Return the digest.
let digest_words = match ctx.algo {
Algorithm::SHA1 => 5,
#[cfg(any(hash_v1, hash_v2, hash_v4))]
Algorithm::MD5 => 4,
Algorithm::SHA224 => 7,
Algorithm::SHA256 => 8,
#[cfg(hash_v3)]
Algorithm::SHA384 => 12,
#[cfg(hash_v3)]
Algorithm::SHA512_224 => 7,
#[cfg(hash_v3)]
Algorithm::SHA512_256 => 8,
#[cfg(hash_v3)]
Algorithm::SHA512 => 16,
};
let digest_len_bytes = digest_words * 4;
// Panics if the supplied digest buffer is too short.
if digest.len() < digest_len_bytes {
panic!("Digest buffer must be at least {} bytes long.", digest_words * 4);
}
let mut i = 0;
while i < digest_words {
let word = T::regs().hr(i).read();
digest[(i * 4)..((i * 4) + 4)].copy_from_slice(word.to_be_bytes().as_slice());
i += 1;
}
digest_len_bytes
}
/// Push data into the hash core.
fn accumulate_blocking(&mut self, input: &[u8]) {
// Set the number of valid bits.
let num_valid_bits: u8 = (8 * (input.len() % 4)) as u8;
T::regs().str().modify(|w| w.set_nblw(num_valid_bits));
let mut i = 0;
while i < input.len() {
let mut word: [u8; 4] = [0; 4];
let copy_idx = min(i + 4, input.len());
word[0..copy_idx - i].copy_from_slice(&input[i..copy_idx]);
T::regs().din().write_value(u32::from_ne_bytes(word));
i += 4;
}
}
/// Save the peripheral state to a context.
fn store_context<'c>(&mut self, ctx: &mut Context<'c>) {
// Block waiting for data in ready.
while !T::regs().sr().read().dinis() {}
// Store peripheral context.
ctx.imr = T::regs().imr().read().0;
ctx.str = T::regs().str().read().0;
ctx.cr = T::regs().cr().read().0;
let mut i = 0;
while i < NUM_CONTEXT_REGS {
ctx.csr[i] = T::regs().csr(i).read();
i += 1;
}
}
/// Restore the peripheral state from a context.
fn load_context(&mut self, ctx: &Context) {
// Restore the peripheral state from the context.
T::regs().imr().write_value(Imr { 0: ctx.imr });
T::regs().str().write_value(Str { 0: ctx.str });
T::regs().cr().write_value(Cr { 0: ctx.cr });
T::regs().cr().modify(|w| w.set_init(true));
let mut i = 0;
while i < NUM_CONTEXT_REGS {
T::regs().csr(i).write_value(ctx.csr[i]);
i += 1;
}
}
}
#[cfg(hash_v2)]
impl<'d, T: Instance> Hash<'d, T, Async> {
/// Instantiates, resets, and enables the HASH peripheral.
pub fn new(
peripheral: impl Peripheral<P = T> + 'd,
dma: impl Peripheral<P = impl Dma<T>> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
) -> Self {
rcc::enable_and_reset::<HASH>();
into_ref!(peripheral, dma);
let instance = Self {
_peripheral: peripheral,
_phantom: PhantomData,
dma: new_dma!(dma),
};
T::Interrupt::unpend();
unsafe { T::Interrupt::enable() };
instance
}
/// Restores the peripheral state using the given context,
/// then updates the state with the provided data.
/// Peripheral state is saved upon return.
#[cfg(hash_v2)]
pub async fn update<'c>(&mut self, ctx: &mut Context<'c>, input: &[u8])
where
D: crate::hash::Dma<T>,
{
pub async fn update(&mut self, ctx: &mut Context<'_>, input: &[u8]) {
// Restore the peripheral state.
self.load_context(&ctx);
@ -353,68 +481,7 @@ impl<'d, T: Instance, D> Hash<'d, T, D> {
/// The digest buffer must be large enough to accomodate a digest for the selected algorithm.
/// The largest returned digest size is 128 bytes for SHA-512.
/// Panics if the supplied digest buffer is too short.
pub fn finish_blocking<'c>(&mut self, mut ctx: Context<'c>, digest: &mut [u8]) -> usize {
// Restore the peripheral state.
self.load_context(&ctx);
// Hash the leftover bytes, if any.
self.accumulate_blocking(&ctx.buffer[0..ctx.buflen]);
ctx.buflen = 0;
//Start the digest calculation.
T::regs().str().write(|w| w.set_dcal(true));
// Load the HMAC key if provided.
if let Some(key) = ctx.key {
while !T::regs().sr().read().dinis() {}
self.accumulate_blocking(key);
T::regs().str().write(|w| w.set_dcal(true));
}
// Block until digest computation is complete.
while !T::regs().sr().read().dcis() {}
// Return the digest.
let digest_words = match ctx.algo {
Algorithm::SHA1 => 5,
#[cfg(any(hash_v1, hash_v2, hash_v4))]
Algorithm::MD5 => 4,
Algorithm::SHA224 => 7,
Algorithm::SHA256 => 8,
#[cfg(hash_v3)]
Algorithm::SHA384 => 12,
#[cfg(hash_v3)]
Algorithm::SHA512_224 => 7,
#[cfg(hash_v3)]
Algorithm::SHA512_256 => 8,
#[cfg(hash_v3)]
Algorithm::SHA512 => 16,
};
let digest_len_bytes = digest_words * 4;
// Panics if the supplied digest buffer is too short.
if digest.len() < digest_len_bytes {
panic!("Digest buffer must be at least {} bytes long.", digest_words * 4);
}
let mut i = 0;
while i < digest_words {
let word = T::regs().hr(i).read();
digest[(i * 4)..((i * 4) + 4)].copy_from_slice(word.to_be_bytes().as_slice());
i += 1;
}
digest_len_bytes
}
/// Computes a digest for the given context.
/// The digest buffer must be large enough to accomodate a digest for the selected algorithm.
/// The largest returned digest size is 128 bytes for SHA-512.
/// Panics if the supplied digest buffer is too short.
#[cfg(hash_v2)]
pub async fn finish<'c>(&mut self, mut ctx: Context<'c>, digest: &mut [u8]) -> usize
where
D: crate::hash::Dma<T>,
{
pub async fn finish<'c>(&mut self, mut ctx: Context<'c>, digest: &mut [u8]) -> usize {
// Restore the peripheral state.
self.load_context(&ctx);
@ -483,27 +550,7 @@ impl<'d, T: Instance, D> Hash<'d, T, D> {
}
/// Push data into the hash core.
fn accumulate_blocking(&mut self, input: &[u8]) {
// Set the number of valid bits.
let num_valid_bits: u8 = (8 * (input.len() % 4)) as u8;
T::regs().str().modify(|w| w.set_nblw(num_valid_bits));
let mut i = 0;
while i < input.len() {
let mut word: [u8; 4] = [0; 4];
let copy_idx = min(i + 4, input.len());
word[0..copy_idx - i].copy_from_slice(&input[i..copy_idx]);
T::regs().din().write_value(u32::from_ne_bytes(word));
i += 4;
}
}
/// Push data into the hash core.
#[cfg(hash_v2)]
async fn accumulate(&mut self, input: &[u8])
where
D: crate::hash::Dma<T>,
{
async fn accumulate(&mut self, input: &[u8]) {
// Ignore an input length of 0.
if input.len() == 0 {
return;
@ -514,57 +561,20 @@ impl<'d, T: Instance, D> Hash<'d, T, D> {
T::regs().str().modify(|w| w.set_nblw(num_valid_bits));
// Configure DMA to transfer input to hash core.
let dma_request = self.dma.request();
let dst_ptr: *mut u32 = T::regs().din().as_ptr();
let mut num_words = input.len() / 4;
if input.len() % 4 > 0 {
num_words += 1;
}
let src_ptr: *const [u8] = ptr::slice_from_raw_parts(input.as_ptr().cast(), num_words);
let dma_transfer = unsafe {
Transfer::new_write_raw(
&mut self.dma,
dma_request,
src_ptr,
dst_ptr as *mut u32,
Default::default(),
)
};
let dma = self.dma.as_mut().unwrap();
let dma_transfer = unsafe { dma.write_raw(src_ptr, dst_ptr as *mut u32, Default::default()) };
T::regs().cr().modify(|w| w.set_dmae(true));
// Wait for the transfer to complete.
dma_transfer.await;
}
/// Save the peripheral state to a context.
fn store_context<'c>(&mut self, ctx: &mut Context<'c>) {
// Block waiting for data in ready.
while !T::regs().sr().read().dinis() {}
// Store peripheral context.
ctx.imr = T::regs().imr().read().0;
ctx.str = T::regs().str().read().0;
ctx.cr = T::regs().cr().read().0;
let mut i = 0;
while i < NUM_CONTEXT_REGS {
ctx.csr[i] = T::regs().csr(i).read();
i += 1;
}
}
/// Restore the peripheral state from a context.
fn load_context(&mut self, ctx: &Context) {
// Restore the peripheral state from the context.
T::regs().imr().write_value(Imr { 0: ctx.imr });
T::regs().str().write_value(Str { 0: ctx.str });
T::regs().cr().write_value(Cr { 0: ctx.cr });
T::regs().cr().modify(|w| w.set_init(true));
let mut i = 0;
while i < NUM_CONTEXT_REGS {
T::regs().csr(i).write_value(ctx.csr[i]);
i += 1;
}
}
}
trait SealedInstance {

View File

@ -839,7 +839,7 @@ impl<'d> Spi<'d, Async> {
let rx_src = self.info.regs.rx_ptr();
let rx_f = unsafe { self.rx_dma.as_mut().unwrap().read_raw(rx_src, read, Default::default()) };
let tx_dst = self.info.regs.tx_ptr();
let tx_dst: *mut W = self.info.regs.tx_ptr();
let tx_f = unsafe {
self.tx_dma
.as_mut()

View File

@ -6,7 +6,6 @@
mod common;
use common::*;
use embassy_executor::Spawner;
use embassy_stm32::dma::NoDma;
use embassy_stm32::hash::*;
use embassy_stm32::{bind_interrupts, hash, peripherals};
use hmac::{Hmac, Mac};
@ -36,7 +35,7 @@ bind_interrupts!(struct Irqs {
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let p: embassy_stm32::Peripherals = init();
let mut hw_hasher = Hash::new(p.HASH, NoDma, Irqs);
let mut hw_hasher = Hash::new_blocking(p.HASH, Irqs);
let test_1: &[u8] = b"as;dfhaslfhas;oifvnasd;nifvnhasd;nifvhndlkfghsd;nvfnahssdfgsdafgsasdfasdfasdfasdfasdfghjklmnbvcalskdjghalskdjgfbaslkdjfgbalskdjgbalskdjbdfhsdfhsfghsfghfgh";
let test_2: &[u8] = b"fdhalksdjfhlasdjkfhalskdjfhgal;skdjfgalskdhfjgalskdjfglafgadfgdfgdafgaadsfgfgdfgadrgsyfthxfgjfhklhjkfgukhulkvhlvhukgfhfsrghzdhxyfufynufyuszeradrtydyytserr";