Merge pull request #4175 from felipebalbi/imxrt-rtos-timer

iMXRT OS timer
This commit is contained in:
Ulf Lilleengen 2025-05-09 12:39:11 +02:00 committed by GitHub
commit 4dbaa01870
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 214 additions and 85 deletions

View File

@ -12,7 +12,7 @@ documentation = "https://docs.embassy.dev/embassy-imxrt"
[package.metadata.embassy_docs]
src_base = "https://github.com/embassy-rs/embassy/blob/embassy-imxrt-v$VERSION/embassy-imxrt/src/"
src_base_git = "https://github.com/embassy-rs/embassy/blob/$COMMIT/embassy-imxrt/src/"
features = ["defmt", "unstable-pac", "time", "time-driver"]
features = ["defmt", "unstable-pac", "time", "time-driver-os-timer"]
flavors = [
{ regex_feature = "mimxrt6.*", target = "thumbv8m.main-none-eabihf" }
]
@ -37,9 +37,12 @@ defmt = ["dep:defmt", "embassy-hal-internal/defmt", "embassy-sync/defmt", "mimxr
time = ["dep:embassy-time", "embassy-embedded-hal/time"]
## Enable custom embassy time-driver implementation, using 32KHz RTC
time-driver-rtc = ["_time-driver"]
time-driver-rtc = ["_time-driver", "embassy-time-driver?/tick-hz-1_000"]
_time-driver = ["dep:embassy-time-driver", "embassy-time-driver?/tick-hz-1_000", "dep:embassy-time-queue-utils", "embassy-embedded-hal/time"]
## Enable custom embassy time-driver implementation, using 1MHz OS Timer
time-driver-os-timer = ["_time-driver", "embassy-time-driver?/tick-hz-1_000_000"]
_time-driver = ["dep:embassy-time-driver", "dep:embassy-time-queue-utils", "embassy-embedded-hal/time"]
## Reexport the PAC for the currently enabled chip at `embassy_imxrt::pac` (unstable)
unstable-pac = []

View File

@ -1,8 +1,6 @@
//! Clock configuration for the `RT6xx`
use core::sync::atomic::{AtomicU32, AtomicU8, Ordering};
#[cfg(feature = "defmt")]
use defmt;
use paste::paste;
use crate::pac;
@ -503,7 +501,6 @@ impl ConfigurableClock for LposcConfig {
}
}
} else {
error!("failed to convert desired clock rate, {:#}, to LPOSC Freq", freq);
Err(ClockError::InvalidFrequency)
}
}
@ -549,7 +546,6 @@ impl ConfigurableClock for FfroConfig {
Ok(())
}
fn get_clock_rate(&self) -> Result<u32, ClockError> {
trace!("getting ffro clock rate");
Ok(self.freq.load(Ordering::Relaxed))
}
fn set_clock_rate(&mut self, _div: u8, _mult: u8, freq: u32) -> Result<(), ClockError> {
@ -616,7 +612,6 @@ impl ConfigurableClock for SfroConfig {
fn set_clock_rate(&mut self, _div: u8, _mult: u8, freq: u32) -> Result<(), ClockError> {
if self.state == State::Enabled {
if freq == SFRO_FREQ {
trace!("Sfro frequency is already set at 16MHz");
Ok(())
} else {
Err(ClockError::InvalidFrequency)
@ -677,7 +672,6 @@ impl MultiSourceClock for MainPllClkConfig {
}
MainPllClkSrc::SFRO => {
if !clock_src_config.is_enabled() {
error!("Can't set SFRO as source for MainPll as it's not enabled");
return Err(ClockError::ClockNotEnabled);
}
// check if desired frequency is a valid multiple of 16m SFRO clock
@ -703,7 +697,6 @@ impl ConfigurableClock for MainPllClkConfig {
}
fn disable(&self) -> Result<(), ClockError> {
if self.is_enabled() {
error!("Attempting to reset the Main Pll Clock, should be resetting its source");
Err(ClockError::ClockNotSupported)
} else {
Err(ClockError::ClockNotEnabled)
@ -719,7 +712,6 @@ impl ConfigurableClock for MainPllClkConfig {
}
fn set_clock_rate(&mut self, div: u8, mult: u8, freq: u32) -> Result<(), ClockError> {
if self.is_enabled() {
trace!("attempting to set main pll clock rate");
// SAFETY: unsafe needed to take pointers to Sysctl0 and Clkctl0
let clkctl0 = unsafe { crate::pac::Clkctl0::steal() };
let sysctl0 = unsafe { crate::pac::Sysctl0::steal() };
@ -741,15 +733,12 @@ impl ConfigurableClock for MainPllClkConfig {
base_rate = r;
}
MainPllClkSrc::FFRO => {
trace!("found FFRO as source, wait a bit");
delay_loop_clocks(1000, desired_freq);
match clkctl0.ffroctl0().read().trim_range().is_ffro_48mhz() {
true => base_rate = Into::into(FfroFreq::Ffro48m),
false => base_rate = Into::into(FfroFreq::Ffro60m),
}
trace!("found ffro rate to be: {:#}", base_rate);
if div == 2 {
trace!("dividing FFRO rate by 2");
clkctl0.syspll0clksel().write(|w| w.sel().ffro_div_2());
delay_loop_clocks(150, desired_freq);
base_rate /= 2;
@ -763,10 +752,8 @@ impl ConfigurableClock for MainPllClkConfig {
}
};
base_rate *= u32::from(mult);
trace!("calculated base rate at: {:#}", base_rate);
if base_rate != freq {
// make sure to power syspll back up before returning the error
error!("invalid frequency found, powering syspll back up before returning error. Check div and mult");
// Clear System PLL reset
clkctl0.syspll0ctl0().write(|w| w.reset().normal());
// Power up SYSPLL
@ -775,13 +762,11 @@ impl ConfigurableClock for MainPllClkConfig {
.write(|w| w.syspllana_pd().clr_pdruncfg0().syspllldo_pd().clr_pdruncfg0());
return Err(ClockError::InvalidFrequency);
}
trace!("setting default num and denom");
// SAFETY: unsafe needed to write the bits for the num and demon fields
clkctl0.syspll0num().write(|w| unsafe { w.num().bits(0b0) });
clkctl0.syspll0denom().write(|w| unsafe { w.denom().bits(0b1) });
delay_loop_clocks(30, desired_freq);
self.mult.store(mult, Ordering::Relaxed);
trace!("setting self.mult as: {:#}", mult);
match mult {
16 => {
clkctl0.syspll0ctl0().modify(|_r, w| w.mult().div_16());
@ -803,7 +788,6 @@ impl ConfigurableClock for MainPllClkConfig {
}
_ => return Err(ClockError::InvalidMult),
}
trace!("clear syspll reset");
// Clear System PLL reset
clkctl0.syspll0ctl0().modify(|_r, w| w.reset().normal());
// Power up SYSPLL
@ -819,7 +803,6 @@ impl ConfigurableClock for MainPllClkConfig {
clkctl0.syspll0ctl0().modify(|_, w| w.holdringoff_ena().dsiable());
delay_loop_clocks(15, desired_freq);
trace!("setting new PFD0 bits");
// gate the output and clear bits.
// SAFETY: unsafe needed to write the bits for pfd0
clkctl0
@ -833,7 +816,6 @@ impl ConfigurableClock for MainPllClkConfig {
.modify(|_r, w| unsafe { w.pfd0_clkgate().not_gated().pfd0().bits(0x12) });
// wait for ready bit to be set
delay_loop_clocks(50, desired_freq);
trace!("waiting for mainpll clock to be ready");
while clkctl0.syspll0pfd().read().pfd0_clkrdy().bit_is_clear() {}
// clear by writing a 1
clkctl0.syspll0pfd().modify(|_, w| w.pfd0_clkrdy().set_bit());
@ -854,11 +836,9 @@ impl ConfigurableClock for MainPllClkConfig {
impl MainPllClkConfig {
/// Calculate the mult value of a desired frequency, return error if invalid
pub(self) fn calc_mult(rate: u32, base_freq: u32) -> Result<u8, ClockError> {
trace!("calculating mult for {:#} / {:#}", rate, base_freq);
const VALIDMULTS: [u8; 6] = [16, 17, 20, 22, 27, 33];
if rate > base_freq && rate % base_freq == 0 {
let mult = (rate / base_freq) as u8;
trace!("verifying that calculated mult {:#} is a valid one", mult);
if VALIDMULTS.into_iter().any(|i| i == mult) {
Ok(mult)
} else {
@ -1112,7 +1092,6 @@ impl ConfigurableClock for MainClkConfig {
Ok(())
}
fn disable(&self) -> Result<(), ClockError> {
error!("Attempting to reset the main clock, should NOT happen during runtime");
Err(ClockError::ClockNotSupported)
}
fn get_clock_rate(&self) -> Result<u32, ClockError> {
@ -1120,7 +1099,6 @@ impl ConfigurableClock for MainClkConfig {
Ok(rate)
}
fn set_clock_rate(&mut self, _div: u8, _mult: u8, _freq: u32) -> Result<(), ClockError> {
error!("The multi-source set_clock_rate_and_source method should be used instead of set_clock_rate");
Err(ClockError::ClockNotSupported)
}
fn is_enabled(&self) -> bool {
@ -1145,7 +1123,6 @@ impl ConfigurableClock for ClkInConfig {
}
}
fn set_clock_rate(&mut self, _div: u8, _mult: u8, freq: u32) -> Result<(), ClockError> {
trace!("Setting value of clk in config, this won't change the clock itself");
self.freq.as_ref().unwrap().store(freq, Ordering::Relaxed);
Ok(())
}
@ -1188,7 +1165,6 @@ impl ConfigurableClock for RtcClkConfig {
Ok(())
}
fn disable(&self) -> Result<(), ClockError> {
error!("Resetting the RTC clock, this should NOT happen during runtime");
Err(ClockError::ClockNotSupported)
}
fn set_clock_rate(&mut self, _div: u8, _mult: u8, freq: u32) -> Result<(), ClockError> {
@ -1199,7 +1175,6 @@ impl ConfigurableClock for RtcClkConfig {
match r {
RtcFreq::Default1Hz => {
if rtc.ctrl().read().rtc_en().is_enable() {
trace!("Attempting to enable an already enabled clock, RTC 1Hz");
} else {
rtc.ctrl().modify(|_r, w| w.rtc_en().enable());
}
@ -1207,7 +1182,6 @@ impl ConfigurableClock for RtcClkConfig {
}
RtcFreq::HighResolution1khz => {
if rtc.ctrl().read().rtc1khz_en().is_enable() {
trace!("Attempting to enable an already enabled clock, RTC 1Hz");
} else {
rtc.ctrl().modify(|_r, w| w.rtc1khz_en().enable());
}
@ -1215,7 +1189,6 @@ impl ConfigurableClock for RtcClkConfig {
}
RtcFreq::SubSecond32kHz => {
if rtc.ctrl().read().rtc_subsec_ena().is_enable() {
trace!("Attempting to enable an already enabled clock, RTC 1Hz");
} else {
rtc.ctrl().modify(|_r, w| w.rtc_subsec_ena().enable());
}
@ -1245,18 +1218,12 @@ impl ConfigurableClock for RtcClkConfig {
impl SysClkConfig {
/// Updates the system core clock frequency, SW concept used for systick
fn update_sys_core_clock(&self) {
trace!(
"System core clock has been updated to {:?}, this involves no HW reg writes",
self.sysclkfreq.load(Ordering::Relaxed)
);
}
fn update_sys_core_clock(&self) {}
}
impl ConfigurableClock for SysOscConfig {
fn enable_and_reset(&self) -> Result<(), ClockError> {
if self.state == State::Enabled {
trace!("SysOsc was already enabled");
return Ok(());
}
@ -1498,32 +1465,26 @@ impl ClockOutConfig {
/// Using the config, enables all desired clocks to desired clock rates
fn init_clock_hw(config: ClockConfig) -> Result<(), ClockError> {
if let Err(e) = config.rtc.enable_and_reset() {
error!("couldn't Power on OSC for RTC, result: {:?}", e);
return Err(e);
}
if let Err(e) = config.lposc.enable_and_reset() {
error!("couldn't Power on LPOSC, result: {:?}", e);
return Err(e);
}
if let Err(e) = config.ffro.enable_and_reset() {
error!("couldn't Power on FFRO, result: {:?}", e);
return Err(e);
}
if let Err(e) = config.sfro.enable_and_reset() {
error!("couldn't Power on SFRO, result: {:?}", e);
return Err(e);
}
if let Err(e) = config.sys_osc.enable_and_reset() {
error!("Couldn't enable sys oscillator {:?}", e);
return Err(e);
}
if let Err(e) = config.main_pll_clk.enable_and_reset() {
error!("Couldn't enable main pll clock {:?}", e);
return Err(e);
}
@ -1542,7 +1503,6 @@ fn init_clock_hw(config: ClockConfig) -> Result<(), ClockError> {
init_syscpuahb_clk();
if let Err(e) = config.main_clk.enable_and_reset() {
error!("Couldn't enable main clock {:?}", e);
return Err(e);
}
@ -1561,7 +1521,8 @@ pub(crate) unsafe fn init(config: ClockConfig) -> Result<(), ClockError> {
///Trait to expose perph clocks
trait SealedSysconPeripheral {
fn enable_and_reset_perph_clock();
fn enable_perph_clock();
fn reset_perph();
fn disable_perph_clock();
}
@ -1574,7 +1535,18 @@ pub trait SysconPeripheral: SealedSysconPeripheral + 'static {}
///
/// Peripheral must not be in use.
pub fn enable_and_reset<T: SysconPeripheral>() {
T::enable_and_reset_perph_clock();
T::enable_perph_clock();
T::reset_perph();
}
/// Enables peripheral `T`.
pub fn enable<T: SysconPeripheral>() {
T::enable_perph_clock();
}
/// Reset peripheral `T`.
pub fn reset<T: SysconPeripheral>() {
T::reset_perph();
}
/// Disables peripheral `T`.
@ -1588,15 +1560,21 @@ pub fn disable<T: SysconPeripheral>() {
macro_rules! impl_perph_clk {
($peripheral:ident, $clkctl:ident, $clkreg:ident, $rstctl:ident, $rstreg:ident, $bit:expr) => {
impl SealedSysconPeripheral for crate::peripherals::$peripheral {
fn enable_and_reset_perph_clock() {
fn enable_perph_clock() {
// SAFETY: unsafe needed to take pointers to Rstctl1 and Clkctl1
let cc1 = unsafe { pac::$clkctl::steal() };
let rc1 = unsafe { pac::$rstctl::steal() };
paste! {
// SAFETY: unsafe due to the use of bits()
cc1.[<$clkreg _set>]().write(|w| unsafe { w.bits(1 << $bit) });
}
}
fn reset_perph() {
// SAFETY: unsafe needed to take pointers to Rstctl1 and Clkctl1
let rc1 = unsafe { pac::$rstctl::steal() };
paste! {
// SAFETY: unsafe due to the use of bits()
rc1.[<$rstreg _clr>]().write(|w| unsafe { w.bits(1 << $bit) });
}
@ -1605,12 +1583,8 @@ macro_rules! impl_perph_clk {
fn disable_perph_clock() {
// SAFETY: unsafe needed to take pointers to Rstctl1 and Clkctl1
let cc1 = unsafe { pac::$clkctl::steal() };
let rc1 = unsafe { pac::$rstctl::steal() };
paste! {
// SAFETY: unsafe due to the use of bits()
rc1.[<$rstreg _set>]().write(|w| unsafe { w.bits(1 << $bit) });
// SAFETY: unsafe due to the use of bits()
cc1.[<$clkreg _clr>]().write(|w| unsafe { w.bits(1 << $bit) });
}

View File

@ -22,7 +22,7 @@ pub mod gpio;
pub mod iopctl;
#[cfg(feature = "_time-driver")]
pub mod rtc;
pub mod time_driver;
// This mod MUST go last, so that it sees all the `impl_foo!' macros
#[cfg_attr(feature = "mimxrt633s", path = "chips/mimxrt633s.rs")]
@ -132,12 +132,10 @@ pub fn init(config: config::Config) -> Peripherals {
error!("unable to initialize Clocks for reason: {:?}", e);
// Panic here?
}
gpio::init();
}
// init RTC time driver
#[cfg(feature = "_time-driver")]
rtc::init(config.time_interrupt_priority);
time_driver::init(config.time_interrupt_priority);
gpio::init();
peripherals
}

View File

@ -1,5 +1,6 @@
//! RTC Time Driver.
//! Time Driver.
use core::cell::{Cell, RefCell};
#[cfg(feature = "time-driver-rtc")]
use core::sync::atomic::{compiler_fence, AtomicU32, Ordering};
use critical_section::CriticalSection;
@ -8,27 +9,11 @@ use embassy_sync::blocking_mutex::Mutex;
use embassy_time_driver::Driver;
use embassy_time_queue_utils::Queue;
#[cfg(feature = "time-driver-os-timer")]
use crate::clocks::enable;
use crate::interrupt::InterruptExt;
use crate::{interrupt, pac};
fn rtc() -> &'static pac::rtc::RegisterBlock {
unsafe { &*pac::Rtc::ptr() }
}
/// Calculate the timestamp from the period count and the tick count.
///
/// To get `now()`, `period` is read first, then `counter` is read. If the counter value matches
/// the expected range for the `period` parity, we're done. If it doesn't, this means that
/// a new period start has raced us between reading `period` and `counter`, so we assume the `counter` value
/// corresponds to the next period.
///
/// the 1kHz RTC counter is 16 bits and RTC doesn't have separate compare channels,
/// so using a 32 bit GPREG0-2 as counter, compare, and int_en
/// `period` is a 32bit integer, gpreg 'counter' is 31 bits plus the parity bit for overflow detection
fn calc_now(period: u32, counter: u32) -> u64 {
((period as u64) << 31) + ((counter ^ ((period & 1) << 31)) as u64)
}
struct AlarmState {
timestamp: Cell<u64>,
}
@ -43,6 +28,34 @@ impl AlarmState {
}
}
#[cfg(feature = "time-driver-rtc")]
fn rtc() -> &'static pac::rtc::RegisterBlock {
unsafe { &*pac::Rtc::ptr() }
}
/// Calculate the timestamp from the period count and the tick count.
///
/// To get `now()`, `period` is read first, then `counter` is read. If the counter value matches
/// the expected range for the `period` parity, we're done. If it doesn't, this means that
/// a new period start has raced us between reading `period` and `counter`, so we assume the `counter` value
/// corresponds to the next period.
///
/// the 1kHz RTC counter is 16 bits and RTC doesn't have separate compare channels,
/// so using a 32 bit GPREG0-2 as counter, compare, and int_en
/// `period` is a 32bit integer, gpreg 'counter' is 31 bits plus the parity bit for overflow detection
#[cfg(feature = "time-driver-rtc")]
fn calc_now(period: u32, counter: u32) -> u64 {
((period as u64) << 31) + ((counter ^ ((period & 1) << 31)) as u64)
}
#[cfg(feature = "time-driver-rtc")]
embassy_time_driver::time_driver_impl!(static DRIVER: Rtc = Rtc {
period: AtomicU32::new(0),
alarms: Mutex::const_new(CriticalSectionRawMutex::new(), AlarmState::new()),
queue: Mutex::new(RefCell::new(Queue::new())),
});
#[cfg(feature = "time-driver-rtc")]
struct Rtc {
/// Number of 2^31 periods elapsed since boot.
period: AtomicU32,
@ -51,12 +64,7 @@ struct Rtc {
queue: Mutex<CriticalSectionRawMutex, RefCell<Queue>>,
}
embassy_time_driver::time_driver_impl!(static DRIVER: Rtc = Rtc {
period: AtomicU32::new(0),
alarms: Mutex::const_new(CriticalSectionRawMutex::new(), AlarmState::new()),
queue: Mutex::new(RefCell::new(Queue::new())),
});
#[cfg(feature = "time-driver-rtc")]
impl Rtc {
/// Access the GPREG0 register to use it as a 31-bit counter.
#[inline]
@ -219,6 +227,7 @@ impl Rtc {
}
}
#[cfg(feature = "time-driver-rtc")]
impl Driver for Rtc {
fn now(&self) -> u64 {
// `period` MUST be read before `counter`, see comment at the top for details.
@ -242,13 +251,158 @@ impl Driver for Rtc {
}
}
#[cfg(feature = "rt")]
#[cfg(all(feature = "rt", feature = "time-driver-rtc"))]
#[allow(non_snake_case)]
#[interrupt]
fn RTC() {
DRIVER.on_interrupt()
}
#[cfg(feature = "time-driver-os-timer")]
fn os() -> &'static pac::ostimer0::RegisterBlock {
unsafe { &*pac::Ostimer0::ptr() }
}
/// Convert gray to decimal
///
/// Os Event provides a 64-bit timestamp gray-encoded. All we have to
/// do here is read both 32-bit halves of the register and convert
/// from gray to regular binary.
#[cfg(feature = "time-driver-os-timer")]
fn gray_to_dec(gray: u64) -> u64 {
let mut dec = gray;
dec ^= dec >> 1;
dec ^= dec >> 2;
dec ^= dec >> 4;
dec ^= dec >> 8;
dec ^= dec >> 16;
dec ^= dec >> 32;
dec
}
/// Convert decimal to gray
///
/// Before writing match value to the target register, we must convert
/// it back into gray code.
#[cfg(feature = "time-driver-os-timer")]
fn dec_to_gray(dec: u64) -> u64 {
let gray = dec;
gray ^ (gray >> 1)
}
#[cfg(feature = "time-driver-os-timer")]
embassy_time_driver::time_driver_impl!(static DRIVER: OsTimer = OsTimer {
alarms: Mutex::const_new(CriticalSectionRawMutex::new(), AlarmState::new()),
queue: Mutex::new(RefCell::new(Queue::new())),
});
#[cfg(feature = "time-driver-os-timer")]
struct OsTimer {
/// Timestamp at which to fire alarm. u64::MAX if no alarm is scheduled.
alarms: Mutex<CriticalSectionRawMutex, AlarmState>,
queue: Mutex<CriticalSectionRawMutex, RefCell<Queue>>,
}
#[cfg(feature = "time-driver-os-timer")]
impl OsTimer {
fn init(&'static self, irq_prio: crate::interrupt::Priority) {
// init alarms
critical_section::with(|cs| {
let alarm = DRIVER.alarms.borrow(cs);
alarm.timestamp.set(u64::MAX);
});
// Enable clocks. Documentation advises AGAINST resetting this
// peripheral.
enable::<crate::peripherals::OS_EVENT>();
interrupt::OS_EVENT.disable();
// Make sure interrupt is masked
os().osevent_ctrl().modify(|_, w| w.ostimer_intena().clear_bit());
// Default to the end of time
os().match_l().write(|w| unsafe { w.bits(0xffff_ffff) });
os().match_h().write(|w| unsafe { w.bits(0xffff_ffff) });
interrupt::OS_EVENT.unpend();
interrupt::OS_EVENT.set_priority(irq_prio);
unsafe { interrupt::OS_EVENT.enable() };
}
fn set_alarm(&self, cs: CriticalSection, timestamp: u64) -> bool {
let alarm = self.alarms.borrow(cs);
alarm.timestamp.set(timestamp);
let t = self.now();
if timestamp <= t {
os().osevent_ctrl().modify(|_, w| w.ostimer_intena().clear_bit());
alarm.timestamp.set(u64::MAX);
return false;
}
let gray_timestamp = dec_to_gray(timestamp);
os().match_l()
.write(|w| unsafe { w.bits(gray_timestamp as u32 & 0xffff_ffff) });
os().match_h()
.write(|w| unsafe { w.bits((gray_timestamp >> 32) as u32) });
os().osevent_ctrl().modify(|_, w| w.ostimer_intena().set_bit());
true
}
#[cfg(feature = "rt")]
fn trigger_alarm(&self, cs: CriticalSection) {
let mut next = self.queue.borrow(cs).borrow_mut().next_expiration(self.now());
while !self.set_alarm(cs, next) {
next = self.queue.borrow(cs).borrow_mut().next_expiration(self.now());
}
}
#[cfg(feature = "rt")]
fn on_interrupt(&self) {
critical_section::with(|cs| {
if os().osevent_ctrl().read().ostimer_intrflag().bit_is_set() {
os().osevent_ctrl().modify(|_, w| w.ostimer_intena().clear_bit());
self.trigger_alarm(cs);
}
});
}
}
#[cfg(feature = "time-driver-os-timer")]
impl Driver for OsTimer {
fn now(&self) -> u64 {
let mut t = os().evtimerh().read().bits() as u64;
t <<= 32;
t |= os().evtimerl().read().bits() as u64;
gray_to_dec(t)
}
fn schedule_wake(&self, at: u64, waker: &core::task::Waker) {
critical_section::with(|cs| {
let mut queue = self.queue.borrow(cs).borrow_mut();
if queue.schedule_wake(at, waker) {
let mut next = queue.next_expiration(self.now());
while !self.set_alarm(cs, next) {
next = queue.next_expiration(self.now());
}
}
})
}
}
#[cfg(all(feature = "rt", feature = "time-driver-os-timer"))]
#[allow(non_snake_case)]
#[interrupt]
fn OS_EVENT() {
DRIVER.on_interrupt()
}
pub(crate) fn init(irq_prio: crate::interrupt::Priority) {
DRIVER.init(irq_prio)
}

View File

@ -12,8 +12,8 @@ defmt-rtt = "1.0"
embassy-executor = { version = "0.7.0", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "executor-interrupt", "defmt"] }
embassy-futures = { version = "0.1.1", path = "../../embassy-futures" }
embassy-imxrt = { version = "0.1.0", path = "../../embassy-imxrt", features = ["defmt", "mimxrt685s", "unstable-pac", "time", "time-driver-rtc"] }
embassy-time = { version = "0.4", path = "../../embassy-time" }
embassy-imxrt = { version = "0.1.0", path = "../../embassy-imxrt", features = ["defmt", "mimxrt685s", "unstable-pac", "time", "time-driver-os-timer"] }
embassy-time = { version = "0.4", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime"] }
embassy-sync = { version = "0.6.2", path = "../../embassy-sync", features = ["defmt"] }
embedded-hal-1 = { package = "embedded-hal", version = "1.0" }
embedded-hal-async = "1.0.0"