Merge pull request #3667 from williams-one/stm32u5-add-hspi-support

STM32U5: add HSPI support
This commit is contained in:
Dario Nieuwenhuis 2025-01-07 21:15:54 +00:00 committed by GitHub
commit 2a06eb2459
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 1899 additions and 1 deletions

View File

@ -1091,6 +1091,27 @@ fn main() {
(("octospim", "P2_NCS"), quote!(crate::ospi::NSSPin)),
(("octospim", "P2_CLK"), quote!(crate::ospi::SckPin)),
(("octospim", "P2_NCLK"), quote!(crate::ospi::NckPin)),
(("hspi", "IO0"), quote!(crate::hspi::D0Pin)),
(("hspi", "IO1"), quote!(crate::hspi::D1Pin)),
(("hspi", "IO2"), quote!(crate::hspi::D2Pin)),
(("hspi", "IO3"), quote!(crate::hspi::D3Pin)),
(("hspi", "IO4"), quote!(crate::hspi::D4Pin)),
(("hspi", "IO5"), quote!(crate::hspi::D5Pin)),
(("hspi", "IO6"), quote!(crate::hspi::D6Pin)),
(("hspi", "IO7"), quote!(crate::hspi::D7Pin)),
(("hspi", "IO8"), quote!(crate::hspi::D8Pin)),
(("hspi", "IO9"), quote!(crate::hspi::D9Pin)),
(("hspi", "IO10"), quote!(crate::hspi::D10Pin)),
(("hspi", "IO11"), quote!(crate::hspi::D11Pin)),
(("hspi", "IO12"), quote!(crate::hspi::D12Pin)),
(("hspi", "IO13"), quote!(crate::hspi::D13Pin)),
(("hspi", "IO14"), quote!(crate::hspi::D14Pin)),
(("hspi", "IO15"), quote!(crate::hspi::D15Pin)),
(("hspi", "DQS0"), quote!(crate::hspi::DQS0Pin)),
(("hspi", "DQS1"), quote!(crate::hspi::DQS1Pin)),
(("hspi", "NCS"), quote!(crate::hspi::NSSPin)),
(("hspi", "CLK"), quote!(crate::hspi::SckPin)),
(("hspi", "NCLK"), quote!(crate::hspi::NckPin)),
(("tsc", "G1_IO1"), quote!(crate::tsc::G1IO1Pin)),
(("tsc", "G1_IO2"), quote!(crate::tsc::G1IO2Pin)),
(("tsc", "G1_IO3"), quote!(crate::tsc::G1IO3Pin)),
@ -1275,6 +1296,7 @@ fn main() {
(("sdmmc", "RX"), quote!(crate::sdmmc::SdmmcDma)),
(("quadspi", "QUADSPI"), quote!(crate::qspi::QuadDma)),
(("octospi", "OCTOSPI1"), quote!(crate::ospi::OctoDma)),
(("hspi", "HSPI1"), quote!(crate::hspi::HspiDma)),
(("dac", "CH1"), quote!(crate::dac::DacDma1)),
(("dac", "CH2"), quote!(crate::dac::DacDma2)),
(("timer", "UP"), quote!(crate::timer::UpDma)),

View File

@ -0,0 +1,411 @@
//! Enums used in Hspi configuration.
#[allow(dead_code)]
#[derive(Copy, Clone, defmt::Format)]
pub(crate) enum HspiMode {
IndirectWrite,
IndirectRead,
AutoPolling,
MemoryMapped,
}
impl Into<u8> for HspiMode {
fn into(self) -> u8 {
match self {
HspiMode::IndirectWrite => 0b00,
HspiMode::IndirectRead => 0b01,
HspiMode::AutoPolling => 0b10,
HspiMode::MemoryMapped => 0b11,
}
}
}
/// Hspi lane width
#[allow(dead_code)]
#[derive(Copy, Clone, defmt::Format)]
pub enum HspiWidth {
/// None
NONE,
/// Single lane
SING,
/// Dual lanes
DUAL,
/// Quad lanes
QUAD,
/// Eight lanes
OCTO,
/// Sixteen lanes
HEXADECA,
}
impl Into<u8> for HspiWidth {
fn into(self) -> u8 {
match self {
HspiWidth::NONE => 0b00,
HspiWidth::SING => 0b01,
HspiWidth::DUAL => 0b10,
HspiWidth::QUAD => 0b11,
HspiWidth::OCTO => 0b100,
HspiWidth::HEXADECA => 0b101,
}
}
}
/// Flash bank selection
#[allow(dead_code)]
#[derive(Copy, Clone, defmt::Format)]
pub enum FlashSelection {
/// Bank 1
Flash1,
/// Bank 2
Flash2,
}
impl Into<bool> for FlashSelection {
fn into(self) -> bool {
match self {
FlashSelection::Flash1 => false,
FlashSelection::Flash2 => true,
}
}
}
/// Wrap Size
#[allow(dead_code)]
#[allow(missing_docs)]
#[derive(Copy, Clone, defmt::Format)]
pub enum WrapSize {
None,
_16Bytes,
_32Bytes,
_64Bytes,
_128Bytes,
}
impl Into<u8> for WrapSize {
fn into(self) -> u8 {
match self {
WrapSize::None => 0x00,
WrapSize::_16Bytes => 0x02,
WrapSize::_32Bytes => 0x03,
WrapSize::_64Bytes => 0x04,
WrapSize::_128Bytes => 0x05,
}
}
}
/// Memory Type
#[allow(missing_docs)]
#[allow(dead_code)]
#[derive(Copy, Clone, defmt::Format)]
pub enum MemoryType {
Micron,
Macronix,
Standard,
MacronixRam,
HyperBusMemory,
HyperBusRegister,
}
impl Into<u8> for MemoryType {
fn into(self) -> u8 {
match self {
MemoryType::Micron => 0x00,
MemoryType::Macronix => 0x01,
MemoryType::Standard => 0x02,
MemoryType::MacronixRam => 0x03,
MemoryType::HyperBusMemory => 0x04,
MemoryType::HyperBusRegister => 0x04,
}
}
}
/// Hspi memory size.
#[allow(missing_docs)]
#[derive(Copy, Clone, defmt::Format)]
pub enum MemorySize {
_1KiB,
_2KiB,
_4KiB,
_8KiB,
_16KiB,
_32KiB,
_64KiB,
_128KiB,
_256KiB,
_512KiB,
_1MiB,
_2MiB,
_4MiB,
_8MiB,
_16MiB,
_32MiB,
_64MiB,
_128MiB,
_256MiB,
_512MiB,
_1GiB,
_2GiB,
_4GiB,
Other(u8),
}
impl Into<u8> for MemorySize {
fn into(self) -> u8 {
match self {
MemorySize::_1KiB => 6,
MemorySize::_2KiB => 7,
MemorySize::_4KiB => 8,
MemorySize::_8KiB => 9,
MemorySize::_16KiB => 10,
MemorySize::_32KiB => 11,
MemorySize::_64KiB => 12,
MemorySize::_128KiB => 13,
MemorySize::_256KiB => 14,
MemorySize::_512KiB => 15,
MemorySize::_1MiB => 16,
MemorySize::_2MiB => 17,
MemorySize::_4MiB => 18,
MemorySize::_8MiB => 19,
MemorySize::_16MiB => 20,
MemorySize::_32MiB => 21,
MemorySize::_64MiB => 22,
MemorySize::_128MiB => 23,
MemorySize::_256MiB => 24,
MemorySize::_512MiB => 25,
MemorySize::_1GiB => 26,
MemorySize::_2GiB => 27,
MemorySize::_4GiB => 28,
MemorySize::Other(val) => val,
}
}
}
/// Hspi Address size
#[derive(Copy, Clone, defmt::Format)]
pub enum AddressSize {
/// 8-bit address
_8Bit,
/// 16-bit address
_16Bit,
/// 24-bit address
_24Bit,
/// 32-bit address
_32Bit,
}
impl Into<u8> for AddressSize {
fn into(self) -> u8 {
match self {
AddressSize::_8Bit => 0b00,
AddressSize::_16Bit => 0b01,
AddressSize::_24Bit => 0b10,
AddressSize::_32Bit => 0b11,
}
}
}
/// Time the Chip Select line stays high.
#[allow(missing_docs)]
#[derive(Copy, Clone, defmt::Format)]
pub enum ChipSelectHighTime {
_1Cycle,
_2Cycle,
_3Cycle,
_4Cycle,
_5Cycle,
_6Cycle,
_7Cycle,
_8Cycle,
}
impl Into<u8> for ChipSelectHighTime {
fn into(self) -> u8 {
match self {
ChipSelectHighTime::_1Cycle => 0,
ChipSelectHighTime::_2Cycle => 1,
ChipSelectHighTime::_3Cycle => 2,
ChipSelectHighTime::_4Cycle => 3,
ChipSelectHighTime::_5Cycle => 4,
ChipSelectHighTime::_6Cycle => 5,
ChipSelectHighTime::_7Cycle => 6,
ChipSelectHighTime::_8Cycle => 7,
}
}
}
/// FIFO threshold.
#[allow(missing_docs)]
#[derive(Copy, Clone, defmt::Format)]
pub enum FIFOThresholdLevel {
_1Bytes,
_2Bytes,
_3Bytes,
_4Bytes,
_5Bytes,
_6Bytes,
_7Bytes,
_8Bytes,
_9Bytes,
_10Bytes,
_11Bytes,
_12Bytes,
_13Bytes,
_14Bytes,
_15Bytes,
_16Bytes,
_17Bytes,
_18Bytes,
_19Bytes,
_20Bytes,
_21Bytes,
_22Bytes,
_23Bytes,
_24Bytes,
_25Bytes,
_26Bytes,
_27Bytes,
_28Bytes,
_29Bytes,
_30Bytes,
_31Bytes,
_32Bytes,
}
impl Into<u8> for FIFOThresholdLevel {
fn into(self) -> u8 {
match self {
FIFOThresholdLevel::_1Bytes => 0,
FIFOThresholdLevel::_2Bytes => 1,
FIFOThresholdLevel::_3Bytes => 2,
FIFOThresholdLevel::_4Bytes => 3,
FIFOThresholdLevel::_5Bytes => 4,
FIFOThresholdLevel::_6Bytes => 5,
FIFOThresholdLevel::_7Bytes => 6,
FIFOThresholdLevel::_8Bytes => 7,
FIFOThresholdLevel::_9Bytes => 8,
FIFOThresholdLevel::_10Bytes => 9,
FIFOThresholdLevel::_11Bytes => 10,
FIFOThresholdLevel::_12Bytes => 11,
FIFOThresholdLevel::_13Bytes => 12,
FIFOThresholdLevel::_14Bytes => 13,
FIFOThresholdLevel::_15Bytes => 14,
FIFOThresholdLevel::_16Bytes => 15,
FIFOThresholdLevel::_17Bytes => 16,
FIFOThresholdLevel::_18Bytes => 17,
FIFOThresholdLevel::_19Bytes => 18,
FIFOThresholdLevel::_20Bytes => 19,
FIFOThresholdLevel::_21Bytes => 20,
FIFOThresholdLevel::_22Bytes => 21,
FIFOThresholdLevel::_23Bytes => 22,
FIFOThresholdLevel::_24Bytes => 23,
FIFOThresholdLevel::_25Bytes => 24,
FIFOThresholdLevel::_26Bytes => 25,
FIFOThresholdLevel::_27Bytes => 26,
FIFOThresholdLevel::_28Bytes => 27,
FIFOThresholdLevel::_29Bytes => 28,
FIFOThresholdLevel::_30Bytes => 29,
FIFOThresholdLevel::_31Bytes => 30,
FIFOThresholdLevel::_32Bytes => 31,
}
}
}
/// Dummy cycle count
#[allow(missing_docs)]
#[derive(Copy, Clone, defmt::Format)]
pub enum DummyCycles {
_0,
_1,
_2,
_3,
_4,
_5,
_6,
_7,
_8,
_9,
_10,
_11,
_12,
_13,
_14,
_15,
_16,
_17,
_18,
_19,
_20,
_21,
_22,
_23,
_24,
_25,
_26,
_27,
_28,
_29,
_30,
_31,
}
impl Into<u8> for DummyCycles {
fn into(self) -> u8 {
match self {
DummyCycles::_0 => 0,
DummyCycles::_1 => 1,
DummyCycles::_2 => 2,
DummyCycles::_3 => 3,
DummyCycles::_4 => 4,
DummyCycles::_5 => 5,
DummyCycles::_6 => 6,
DummyCycles::_7 => 7,
DummyCycles::_8 => 8,
DummyCycles::_9 => 9,
DummyCycles::_10 => 10,
DummyCycles::_11 => 11,
DummyCycles::_12 => 12,
DummyCycles::_13 => 13,
DummyCycles::_14 => 14,
DummyCycles::_15 => 15,
DummyCycles::_16 => 16,
DummyCycles::_17 => 17,
DummyCycles::_18 => 18,
DummyCycles::_19 => 19,
DummyCycles::_20 => 20,
DummyCycles::_21 => 21,
DummyCycles::_22 => 22,
DummyCycles::_23 => 23,
DummyCycles::_24 => 24,
DummyCycles::_25 => 25,
DummyCycles::_26 => 26,
DummyCycles::_27 => 27,
DummyCycles::_28 => 28,
DummyCycles::_29 => 29,
DummyCycles::_30 => 30,
DummyCycles::_31 => 31,
}
}
}
/// Functional mode
#[allow(missing_docs)]
#[allow(dead_code)]
#[derive(Copy, Clone, defmt::Format)]
pub enum FunctionalMode {
IndirectWrite,
IndirectRead,
AutoStatusPolling,
MemoryMapped,
}
impl Into<u8> for FunctionalMode {
fn into(self) -> u8 {
match self {
FunctionalMode::IndirectWrite => 0x00,
FunctionalMode::IndirectRead => 0x01,
FunctionalMode::AutoStatusPolling => 0x02,
FunctionalMode::MemoryMapped => 0x03,
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -83,6 +83,8 @@ pub mod hash;
pub mod hrtim;
#[cfg(hsem)]
pub mod hsem;
#[cfg(hspi)]
pub mod hspi;
#[cfg(i2c)]
pub mod i2c;
#[cfg(any(all(spi_v1, rcc_f4), spi_v3))]

View File

@ -52,7 +52,7 @@ pub struct Config {
/// Enables the transaction boundary feature and defines the boundary to release
/// the chip select
pub chip_select_boundary: u8,
/// Enbales the delay block bypass so the sampling is not affected by the delay block
/// Enables the delay block bypass so the sampling is not affected by the delay block
pub delay_block_bypass: bool,
/// Enables communication regulation feature. Chip select is released when the other
/// OctoSpi requests access to the bus

View File

@ -0,0 +1,455 @@
#![no_main]
#![no_std]
// Tested on an STM32U5G9J-DK2 demo board using the on-board MX66LM1G45G flash memory
// The flash is connected to the HSPI1 port as an OCTA-DTR device
//
// Use embassy-stm32 feature "stm32u5g9zj" and probe-rs chip "STM32U5G9ZJTxQ"
use defmt::info;
use embassy_executor::Spawner;
use embassy_stm32::hspi::{
AddressSize, ChipSelectHighTime, DummyCycles, FIFOThresholdLevel, Hspi, HspiWidth, Instance, MemorySize,
MemoryType, TransferConfig, WrapSize,
};
use embassy_stm32::mode::Async;
use embassy_stm32::rcc;
use embassy_stm32::time::Hertz;
use {defmt_rtt as _, panic_probe as _};
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
info!("Start hspi_memory_mapped");
// RCC config
let mut config = embassy_stm32::Config::default();
config.rcc.hse = Some(rcc::Hse {
freq: Hertz(16_000_000),
mode: rcc::HseMode::Oscillator,
});
config.rcc.pll1 = Some(rcc::Pll {
source: rcc::PllSource::HSE,
prediv: rcc::PllPreDiv::DIV1,
mul: rcc::PllMul::MUL10,
divp: None,
divq: None,
divr: Some(rcc::PllDiv::DIV1),
});
config.rcc.sys = rcc::Sysclk::PLL1_R; // 160 Mhz
config.rcc.pll2 = Some(rcc::Pll {
source: rcc::PllSource::HSE,
prediv: rcc::PllPreDiv::DIV4,
mul: rcc::PllMul::MUL66,
divp: None,
divq: Some(rcc::PllDiv::DIV2),
divr: None,
});
config.rcc.mux.hspi1sel = rcc::mux::Hspisel::PLL2_Q; // 132 MHz
// Initialize peripherals
let p = embassy_stm32::init(config);
let flash_config = embassy_stm32::hspi::Config {
fifo_threshold: FIFOThresholdLevel::_4Bytes,
memory_type: MemoryType::Macronix,
device_size: MemorySize::_1GiB,
chip_select_high_time: ChipSelectHighTime::_2Cycle,
free_running_clock: false,
clock_mode: false,
wrap_size: WrapSize::None,
clock_prescaler: 0,
sample_shifting: false,
delay_hold_quarter_cycle: false,
chip_select_boundary: 0,
delay_block_bypass: false,
max_transfer: 0,
refresh: 0,
};
let use_dma = true;
info!("Testing flash in OCTA DTR mode and memory mapped mode");
let hspi = Hspi::new_octospi(
p.HSPI1,
p.PI3,
p.PH10,
p.PH11,
p.PH12,
p.PH13,
p.PH14,
p.PH15,
p.PI0,
p.PI1,
p.PH9,
p.PI2,
p.GPDMA1_CH7,
flash_config,
);
let mut flash = OctaDtrFlashMemory::new(hspi).await;
let flash_id = flash.read_id();
info!("FLASH ID: {=[u8]:x}", flash_id);
let mut rd_buf = [0u8; 16];
flash.read_memory(0, &mut rd_buf, use_dma).await;
info!("READ BUF: {=[u8]:#X}", rd_buf);
flash.erase_sector(0).await;
flash.read_memory(0, &mut rd_buf, use_dma).await;
info!("READ BUF: {=[u8]:#X}", rd_buf);
assert_eq!(rd_buf[0], 0xFF);
assert_eq!(rd_buf[15], 0xFF);
let mut wr_buf = [0u8; 16];
for i in 0..wr_buf.len() {
wr_buf[i] = i as u8;
}
info!("WRITE BUF: {=[u8]:#X}", wr_buf);
flash.write_memory(0, &wr_buf, use_dma).await;
flash.read_memory(0, &mut rd_buf, use_dma).await;
info!("READ BUF: {=[u8]:#X}", rd_buf);
assert_eq!(rd_buf[0], 0x00);
assert_eq!(rd_buf[15], 0x0F);
flash.enable_mm().await;
info!("Enabled memory mapped mode");
let first_u32 = unsafe { *(0xA0000000 as *const u32) };
info!("first_u32: 0x{=u32:X}", first_u32);
assert_eq!(first_u32, 0x03020100);
let second_u32 = unsafe { *(0xA0000004 as *const u32) };
assert_eq!(second_u32, 0x07060504);
info!("second_u32: 0x{=u32:X}", second_u32);
let first_u8 = unsafe { *(0xA0000000 as *const u8) };
assert_eq!(first_u8, 00);
info!("first_u8: 0x{=u8:X}", first_u8);
let second_u8 = unsafe { *(0xA0000001 as *const u8) };
assert_eq!(second_u8, 0x01);
info!("second_u8: 0x{=u8:X}", second_u8);
let third_u8 = unsafe { *(0xA0000002 as *const u8) };
assert_eq!(third_u8, 0x02);
info!("third_u8: 0x{=u8:X}", third_u8);
let fourth_u8 = unsafe { *(0xA0000003 as *const u8) };
assert_eq!(fourth_u8, 0x03);
info!("fourth_u8: 0x{=u8:X}", fourth_u8);
info!("DONE");
}
// Custom implementation for MX66UW1G45G NOR flash memory from Macronix.
// Chip commands are hardcoded as they depend on the chip used.
// This implementation enables Octa I/O (OPI) and Double Transfer Rate (DTR)
pub struct OctaDtrFlashMemory<'d, I: Instance> {
hspi: Hspi<'d, I, Async>,
}
impl<'d, I: Instance> OctaDtrFlashMemory<'d, I> {
const MEMORY_PAGE_SIZE: usize = 256;
const CMD_READ_OCTA_DTR: u16 = 0xEE11;
const CMD_PAGE_PROGRAM_OCTA_DTR: u16 = 0x12ED;
const CMD_READ_ID_OCTA_DTR: u16 = 0x9F60;
const CMD_RESET_ENABLE: u8 = 0x66;
const CMD_RESET_ENABLE_OCTA_DTR: u16 = 0x6699;
const CMD_RESET: u8 = 0x99;
const CMD_RESET_OCTA_DTR: u16 = 0x9966;
const CMD_WRITE_ENABLE: u8 = 0x06;
const CMD_WRITE_ENABLE_OCTA_DTR: u16 = 0x06F9;
const CMD_SECTOR_ERASE_OCTA_DTR: u16 = 0x21DE;
const CMD_BLOCK_ERASE_OCTA_DTR: u16 = 0xDC23;
const CMD_READ_SR: u8 = 0x05;
const CMD_READ_SR_OCTA_DTR: u16 = 0x05FA;
const CMD_READ_CR2: u8 = 0x71;
const CMD_WRITE_CR2: u8 = 0x72;
const CR2_REG1_ADDR: u32 = 0x00000000;
const CR2_OCTA_DTR: u8 = 0x02;
const CR2_REG3_ADDR: u32 = 0x00000300;
const CR2_DC_6_CYCLES: u8 = 0x07;
pub async fn new(hspi: Hspi<'d, I, Async>) -> Self {
let mut memory = Self { hspi };
memory.reset_memory().await;
memory.enable_octa_dtr().await;
memory
}
async fn enable_octa_dtr(&mut self) {
self.write_enable_spi().await;
self.write_cr2_spi(Self::CR2_REG3_ADDR, Self::CR2_DC_6_CYCLES);
self.write_enable_spi().await;
self.write_cr2_spi(Self::CR2_REG1_ADDR, Self::CR2_OCTA_DTR);
}
pub async fn enable_mm(&mut self) {
let read_config = TransferConfig {
iwidth: HspiWidth::OCTO,
instruction: Some(Self::CMD_READ_OCTA_DTR as u32),
isize: AddressSize::_16Bit,
idtr: true,
adwidth: HspiWidth::OCTO,
adsize: AddressSize::_32Bit,
addtr: true,
dwidth: HspiWidth::OCTO,
ddtr: true,
dummy: DummyCycles::_6,
..Default::default()
};
let write_config = TransferConfig {
iwidth: HspiWidth::OCTO,
isize: AddressSize::_16Bit,
idtr: true,
adwidth: HspiWidth::OCTO,
adsize: AddressSize::_32Bit,
addtr: true,
dwidth: HspiWidth::OCTO,
ddtr: true,
..Default::default()
};
self.hspi.enable_memory_mapped_mode(read_config, write_config).unwrap();
}
async fn exec_command_spi(&mut self, cmd: u8) {
let transaction = TransferConfig {
iwidth: HspiWidth::SING,
instruction: Some(cmd as u32),
..Default::default()
};
info!("Excuting command: 0x{:X}", transaction.instruction.unwrap());
self.hspi.blocking_command(&transaction).unwrap();
}
async fn exec_command_octa_dtr(&mut self, cmd: u16) {
let transaction = TransferConfig {
iwidth: HspiWidth::OCTO,
instruction: Some(cmd as u32),
isize: AddressSize::_16Bit,
idtr: true,
..Default::default()
};
info!("Excuting command: 0x{:X}", transaction.instruction.unwrap());
self.hspi.blocking_command(&transaction).unwrap();
}
fn wait_write_finish_spi(&mut self) {
while (self.read_sr_spi() & 0x01) != 0 {}
}
fn wait_write_finish_octa_dtr(&mut self) {
while (self.read_sr_octa_dtr() & 0x01) != 0 {}
}
pub async fn reset_memory(&mut self) {
// servono entrambi i comandi?
self.exec_command_octa_dtr(Self::CMD_RESET_ENABLE_OCTA_DTR).await;
self.exec_command_octa_dtr(Self::CMD_RESET_OCTA_DTR).await;
self.exec_command_spi(Self::CMD_RESET_ENABLE).await;
self.exec_command_spi(Self::CMD_RESET).await;
self.wait_write_finish_spi();
}
async fn write_enable_spi(&mut self) {
self.exec_command_spi(Self::CMD_WRITE_ENABLE).await;
}
async fn write_enable_octa_dtr(&mut self) {
self.exec_command_octa_dtr(Self::CMD_WRITE_ENABLE_OCTA_DTR).await;
}
pub fn read_id(&mut self) -> [u8; 3] {
let mut buffer = [0; 6];
let transaction: TransferConfig = TransferConfig {
iwidth: HspiWidth::OCTO,
instruction: Some(Self::CMD_READ_ID_OCTA_DTR as u32),
isize: AddressSize::_16Bit,
idtr: true,
adwidth: HspiWidth::OCTO,
address: Some(0),
adsize: AddressSize::_32Bit,
addtr: true,
dwidth: HspiWidth::OCTO,
ddtr: true,
dummy: DummyCycles::_5,
..Default::default()
};
info!("Reading flash id: 0x{:X}", transaction.instruction.unwrap());
self.hspi.blocking_read(&mut buffer, transaction).unwrap();
[buffer[0], buffer[2], buffer[4]]
}
pub async fn read_memory(&mut self, addr: u32, buffer: &mut [u8], use_dma: bool) {
let transaction = TransferConfig {
iwidth: HspiWidth::OCTO,
instruction: Some(Self::CMD_READ_OCTA_DTR as u32),
isize: AddressSize::_16Bit,
idtr: true,
adwidth: HspiWidth::OCTO,
address: Some(addr),
adsize: AddressSize::_32Bit,
addtr: true,
dwidth: HspiWidth::OCTO,
ddtr: true,
dummy: DummyCycles::_6,
..Default::default()
};
if use_dma {
self.hspi.read(buffer, transaction).await.unwrap();
} else {
self.hspi.blocking_read(buffer, transaction).unwrap();
}
}
async fn perform_erase_octa_dtr(&mut self, addr: u32, cmd: u16) {
let transaction = TransferConfig {
iwidth: HspiWidth::OCTO,
instruction: Some(cmd as u32),
isize: AddressSize::_16Bit,
idtr: true,
adwidth: HspiWidth::OCTO,
address: Some(addr),
adsize: AddressSize::_32Bit,
addtr: true,
..Default::default()
};
self.write_enable_octa_dtr().await;
self.hspi.blocking_command(&transaction).unwrap();
self.wait_write_finish_octa_dtr();
}
pub async fn erase_sector(&mut self, addr: u32) {
info!("Erasing 4K sector at address: 0x{:X}", addr);
self.perform_erase_octa_dtr(addr, Self::CMD_SECTOR_ERASE_OCTA_DTR).await;
}
pub async fn erase_block(&mut self, addr: u32) {
info!("Erasing 64K block at address: 0x{:X}", addr);
self.perform_erase_octa_dtr(addr, Self::CMD_BLOCK_ERASE_OCTA_DTR).await;
}
async fn write_page_octa_dtr(&mut self, addr: u32, buffer: &[u8], len: usize, use_dma: bool) {
assert!(
(len as u32 + (addr & 0x000000ff)) <= Self::MEMORY_PAGE_SIZE as u32,
"write_page(): page write length exceeds page boundary (len = {}, addr = {:X}",
len,
addr
);
let transaction = TransferConfig {
iwidth: HspiWidth::OCTO,
instruction: Some(Self::CMD_PAGE_PROGRAM_OCTA_DTR as u32),
isize: AddressSize::_16Bit,
idtr: true,
adwidth: HspiWidth::OCTO,
address: Some(addr),
adsize: AddressSize::_32Bit,
addtr: true,
dwidth: HspiWidth::OCTO,
ddtr: true,
..Default::default()
};
self.write_enable_octa_dtr().await;
if use_dma {
self.hspi.write(buffer, transaction).await.unwrap();
} else {
self.hspi.blocking_write(buffer, transaction).unwrap();
}
self.wait_write_finish_octa_dtr();
}
pub async fn write_memory(&mut self, addr: u32, buffer: &[u8], use_dma: bool) {
let mut left = buffer.len();
let mut place = addr;
let mut chunk_start = 0;
while left > 0 {
let max_chunk_size = Self::MEMORY_PAGE_SIZE - (place & 0x000000ff) as usize;
let chunk_size = if left >= max_chunk_size { max_chunk_size } else { left };
let chunk = &buffer[chunk_start..(chunk_start + chunk_size)];
self.write_page_octa_dtr(place, chunk, chunk_size, use_dma).await;
place += chunk_size as u32;
left -= chunk_size;
chunk_start += chunk_size;
}
}
pub fn read_sr_spi(&mut self) -> u8 {
let mut buffer = [0; 1];
let transaction: TransferConfig = TransferConfig {
iwidth: HspiWidth::SING,
instruction: Some(Self::CMD_READ_SR as u32),
dwidth: HspiWidth::SING,
..Default::default()
};
self.hspi.blocking_read(&mut buffer, transaction).unwrap();
// info!("Read MX66LM1G45G SR register: 0x{:x}", buffer[0]);
buffer[0]
}
pub fn read_sr_octa_dtr(&mut self) -> u8 {
let mut buffer = [0; 2];
let transaction: TransferConfig = TransferConfig {
iwidth: HspiWidth::OCTO,
instruction: Some(Self::CMD_READ_SR_OCTA_DTR as u32),
isize: AddressSize::_16Bit,
idtr: true,
adwidth: HspiWidth::OCTO,
address: Some(0),
adsize: AddressSize::_32Bit,
addtr: true,
dwidth: HspiWidth::OCTO,
ddtr: true,
dummy: DummyCycles::_5,
..Default::default()
};
self.hspi.blocking_read(&mut buffer, transaction).unwrap();
// info!("Read MX66LM1G45G SR register: 0x{:x}", buffer[0]);
buffer[0]
}
pub fn read_cr2_spi(&mut self, addr: u32) -> u8 {
let mut buffer = [0; 1];
let transaction: TransferConfig = TransferConfig {
iwidth: HspiWidth::SING,
instruction: Some(Self::CMD_READ_CR2 as u32),
adwidth: HspiWidth::SING,
address: Some(addr),
adsize: AddressSize::_32Bit,
dwidth: HspiWidth::SING,
..Default::default()
};
self.hspi.blocking_read(&mut buffer, transaction).unwrap();
// info!("Read MX66LM1G45G CR2[0x{:X}] register: 0x{:x}", addr, buffer[0]);
buffer[0]
}
pub fn write_cr2_spi(&mut self, addr: u32, value: u8) {
let buffer = [value; 1];
let transaction: TransferConfig = TransferConfig {
iwidth: HspiWidth::SING,
instruction: Some(Self::CMD_WRITE_CR2 as u32),
adwidth: HspiWidth::SING,
address: Some(addr),
adsize: AddressSize::_32Bit,
dwidth: HspiWidth::SING,
..Default::default()
};
self.hspi.blocking_write(&buffer, transaction).unwrap();
}
}